Your browser doesn't support javascript.
loading
Multimodal Machine Learning-Based Marker Enables Early Detection and Prognosis Prediction for Hyperuricemia.
Zeng, Lin; Ma, Pengcheng; Li, Zeyang; Liang, Shengxing; Wu, Chengkai; Hong, Chang; Li, Yan; Cui, Hao; Li, Ruining; Wang, Jiaren; He, Jingzhe; Li, Wenyuan; Xiao, Lushan; Liu, Li.
Afiliação
  • Zeng L; Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Ma P; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Li Z; School of Public Health, Southern Medical University, Guangzhou, 510515, China.
  • Liang S; School of Health Management, Southern Medical University, Guangzhou, 510515, China.
  • Wu C; Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Hong C; School of Health Management, Southern Medical University, Guangzhou, 510515, China.
  • Li Y; Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Cui H; School of Public Health, Southern Medical University, Guangzhou, 510515, China.
  • Li R; Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Wang J; School of Public Health, Southern Medical University, Guangzhou, 510515, China.
  • He J; School of Health Management, Southern Medical University, Guangzhou, 510515, China.
  • Li W; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Xiao L; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Liu L; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Adv Sci (Weinh) ; 11(34): e2404047, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38976552
ABSTRACT
Hyperuricemia (HUA) has emerged as the second most prevalent metabolic disorder characterized by prolonged and asymptomatic period, triggering gout and metabolism-related outcomes. Early detection and prognosis prediction for HUA and gout are crucial for pre-emptive interventions. Integrating genetic and clinical data from 421287 UK Biobank and 8900 Nanfang Hospital participants, a stacked multimodal machine learning model is developed and validated to synthesize its probabilities as an in-silico quantitative marker for hyperuricemia (ISHUA). The model demonstrates satisfactory performance in detecting HUA, exhibiting area under the curves (AUCs) of 0.859, 0.836, and 0.779 within the train, internal, and external test sets, respectively. ISHUA is significantly associated with gout and metabolism-related outcomes, effectively classifying individuals into low- and high-risk groups for gout in the train (AUC, 0.815) and internal test (AUC, 0.814) sets. The high-risk group shows increased susceptibility to metabolism-related outcomes, and participants with intermediate or favorable lifestyle profiles have hazard ratios of 0.75 and 0.53 for gout compared with those with unfavorable lifestyles. Similar trends are observed for other metabolism-related outcomes. The multimodal machine learning-based ISHUA marker enables personalized risk stratification for gout and metabolism-related outcomes, and it is unveiled that lifestyle changes can ameliorate these outcomes within high-risk group, providing guidance for preventive interventions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomarcadores / Hiperuricemia / Diagnóstico Precoce / Aprendizado de Máquina / Gota Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomarcadores / Hiperuricemia / Diagnóstico Precoce / Aprendizado de Máquina / Gota Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article