Au nanoparticles decorated ß-Bi2O3 as highly-sensitive SERS substrate for detection of methylene blue and methyl orange.
Analyst
; 149(16): 4283-4294, 2024 Aug 05.
Article
em En
| MEDLINE
| ID: mdl-38984809
ABSTRACT
In this work, Au/Bi2O3 was synthesized by loading Au nanoparticles (NPs) onto ß-Bi2O3 by a simple solution reduction method. ß-Bi2O3 was synthesized by a precipitation-thermal decomposition procedure, which results in significantly improved SERS detection limits down to 10-9 M for methylene blue (MB) and 10-7 M for methyl orange (MO) as probe molecules, comparable to those reported for the best semiconductor SERS substrates. In particular, further deposition of Au NPs (5.20% wt%) onto ß-Bi2O3 results in a two-order-of-magnitude enhancement in detection sensitivity, achieving a detection limit of 10-11 M for MB and 10-9 M for MO. Under ultraviolet/visible irradiation, the Au/Bi2O3 hybrids substrate exhibits superior self-cleaning ability due to its photocatalytic degradation ability which can be applied repeatedly to the detection of pollutants. The advanced composite substrate simultaneously achieved ultra-low mass loading of Au NPs, outstanding detection performance, good reproducibility, high stability and self-cleaning ability. The development strategy of low load noble metal coupled high performance semiconductor ß-Bi2O3 to obtain nano-hybrid materials provides a method to balance SERS sensitivity, cost effectiveness and operational stability, and can be synthesized in large quantities, which is a key step towards commercialization and has good reliability prospects.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article