Your browser doesn't support javascript.
loading
In situ targeted base editing of bacteria in the mouse gut.
Brödel, Andreas K; Charpenay, Loïc H; Galtier, Matthieu; Fuche, Fabien J; Terrasse, Rémi; Poquet, Chloé; Havránek, Jan; Pignotti, Simone; Krawczyk, Antonina; Arraou, Marion; Prevot, Gautier; Spadoni, Dalila; Yarnall, Matthew T N; Hessel, Edith M; Fernandez-Rodriguez, Jesus; Duportet, Xavier; Bikard, David.
Afiliação
  • Brödel AK; Eligo Bioscience, Paris, France.
  • Charpenay LH; Eligo Bioscience, Paris, France.
  • Galtier M; Eligo Bioscience, Paris, France.
  • Fuche FJ; Eligo Bioscience, Paris, France.
  • Terrasse R; Eligo Bioscience, Paris, France.
  • Poquet C; Eligo Bioscience, Paris, France.
  • Havránek J; Eligo Bioscience, Paris, France.
  • Pignotti S; Eligo Bioscience, Paris, France.
  • Krawczyk A; Eligo Bioscience, Paris, France.
  • Arraou M; Eligo Bioscience, Paris, France.
  • Prevot G; Eligo Bioscience, Paris, France.
  • Spadoni D; Eligo Bioscience, Paris, France.
  • Yarnall MTN; Eligo Bioscience, Paris, France.
  • Hessel EM; Eligo Bioscience, Paris, France.
  • Fernandez-Rodriguez J; Eligo Bioscience, Paris, France. jesus.fernandez@eligo-bioscience.com.
  • Duportet X; Eligo Bioscience, Paris, France. xavier.duportet@eligo-bioscience.com.
  • Bikard D; Eligo Bioscience, Paris, France. david.bikard@eligo-bioscience.com.
Nature ; 2024 Jul 10.
Article em En | MEDLINE | ID: mdl-38987595
ABSTRACT
Microbiome research is now demonstrating a growing number of bacterial strains and genes that affect our health1. Although CRISPR-derived tools have shown great success in editing disease-driving genes in human cells2, we currently lack the tools to achieve comparable success for bacterial targets in situ. Here we engineer a phage-derived particle to deliver a base editor and modify Escherichia coli colonizing the mouse gut. Editing of a ß-lactamase gene in a model E. coli strain resulted in a median editing efficiency of 93% of the target bacterial population with a single dose. Edited bacteria were stably maintained in the mouse gut for at least 42 days following treatment. This was achieved using a non-replicative DNA vector, preventing maintenance and dissemination of the payload. We then leveraged this approach to edit several genes of therapeutic relevance in E. coli and Klebsiella pneumoniae strains in vitro and demonstrate in situ editing of a gene involved in the production of curli in a pathogenic E. coli strain. Our work demonstrates the feasibility of modifying bacteria directly in the gut, offering a new avenue to investigate the function of bacterial genes and opening the door to the design of new microbiome-targeted therapies.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article