Your browser doesn't support javascript.
loading
Glucose-6-phosphate dehydrogenase maintains redox homeostasis and biosynthesis in LKB1-deficient KRAS-driven lung cancer.
Lan, Taijin; Arastu, Sara; Lam, Jarrick; Kim, Hyungsin; Wang, Wenping; Wang, Samuel; Bhatt, Vrushank; Lopes, Eduardo Cararo; Hu, Zhixian; Sun, Michael; Luo, Xuefei; Ghergurovich, Jonathan M; Su, Xiaoyang; Rabinowitz, Joshua D; White, Eileen; Guo, Jessie Yanxiang.
Afiliação
  • Lan T; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Arastu S; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Lam J; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Kim H; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Wang W; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Wang S; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Bhatt V; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Lopes EC; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Hu Z; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA.
  • Sun M; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Luo X; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Ghergurovich JM; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • Su X; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
  • Rabinowitz JD; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
  • White E; Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
  • Guo JY; Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
Nat Commun ; 15(1): 5857, 2024 Jul 12.
Article em En | MEDLINE | ID: mdl-38997257
ABSTRACT
Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Proteínas Proto-Oncogênicas p21(ras) / Proteínas Serina-Treonina Quinases / Glucosefosfato Desidrogenase / Homeostase / Neoplasias Pulmonares / NADP Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Proteínas Proto-Oncogênicas p21(ras) / Proteínas Serina-Treonina Quinases / Glucosefosfato Desidrogenase / Homeostase / Neoplasias Pulmonares / NADP Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article