Your browser doesn't support javascript.
loading
Non-Invasive Fish Biometrics for Enhancing Precision and Understanding of Aquaculture Farming through Statistical Morphology Analysis and Machine Learning.
Ramírez-Coronel, Fernando Joaquín; Rodríguez-Elías, Oscar Mario; Esquer-Miranda, Edgard; Pérez-Patricio, Madaín; Pérez-Báez, Anna Judith; Hinojosa-Palafox, Eduardo Antonio.
Afiliação
  • Ramírez-Coronel FJ; Division of Graduate Studies and Research, Tecnológico Nacional de México/ I.T. de Hermosillo, Av. Tecnológico 115, Hermosillo 83170, Sonora, Mexico.
  • Rodríguez-Elías OM; Division of Graduate Studies and Research, Tecnológico Nacional de México/ I.T. de Hermosillo, Av. Tecnológico 115, Hermosillo 83170, Sonora, Mexico.
  • Esquer-Miranda E; Licenciatura en Agro Negocios, Campus Hermosillo, Universidad Estatal de Sonora, Av. Ley Federal del Trabajo S/N, Hermosillo 83100, Sonora, Mexico.
  • Pérez-Patricio M; Division of Graduate Studies and Research, Tecnológico Nacional de México/ I.T. de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico.
  • Pérez-Báez AJ; Instituto de Acuacultura del Estado de Sonora, Conmonfort SN, Proyecto Rio Sonora Hermosillo XXI, Hermosillo 83280, Sonora, Mexico.
  • Hinojosa-Palafox EA; Division of Graduate Studies and Research, Tecnológico Nacional de México/ I.T. de Hermosillo, Av. Tecnológico 115, Hermosillo 83170, Sonora, Mexico.
Animals (Basel) ; 14(13)2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38997962
ABSTRACT
Aquaculture requires precise non-invasive methods for biomass estimation. This research validates a novel computer vision methodology that uses a signature function-based feature extraction algorithm combining statistical morphological analysis of the size and shape of fish and machine learning to improve the accuracy of biomass estimation in fishponds and is specifically applied to tilapia (Oreochromis niloticus). These features that are automatically extracted from images are put to the test against previously manually extracted features by comparing the results when applied to three common machine learning methods under two different lighting conditions. The dataset for this analysis encompasses 129 tilapia samples. The results give promising outcomes since the multilayer perceptron model shows robust performance, consistently demonstrating superior accuracy across different features and lighting conditions. The interpretable nature of the model, rooted in the statistical features of the signature function, could provide insights into the morphological and allometric changes at different developmental stages. A comparative analysis against existing literature underscores the competitiveness of the proposed methodology, pointing to advancements in precision, interpretability, and species versatility. This research contributes significantly to the field, accelerating the quest for non-invasive fish biometrics that can be generalized across various aquaculture species in different stages of development. In combination with detection, tracking, and posture recognition, deep learning methodologies such as the one provided in the latest studies could generate a powerful method for real-time fish morphology development, biomass estimation, and welfare monitoring, which are crucial for the effective management of fish farms.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article