Your browser doesn't support javascript.
loading
Construction of Ferric-Oxide-Doped Nickel-Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction.
Xu, Mengdie; Lei, Ling; Hu, Huilin; Chen, Yana; Yang, Xuchao; Yu, Kaige; Cao, Bingying; Zhang, Xianzheng; Jiang, Xueliang; Yao, Chu; Yang, Huan.
Afiliação
  • Xu M; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Lei L; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Hu H; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Chen Y; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Yang X; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Yu K; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Cao B; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Zhang X; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Jiang X; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Yao C; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
  • Yang H; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China.
Molecules ; 29(13)2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38999079
ABSTRACT
Transition-metal-based oxygen evolution reaction (OER) catalysts have attracted widespread attention due to their inexpensive prices, unique layered structures, and rich active sites. Currently, designing low-cost, sustainable, and simple synthesis methods is essential for the application of transition-metal-based catalysts. Here, magnetic field (MF)-assisted chemical corrosion, as a novel technology, is adopted to construct superior OER electrocatalysts. The produced Ni(Fe)(OH)2-Fe2O3 electrode exhibits an overpotential of 272 mV at a current density of 100 mA cm-2, presenting a 64 mV reduction compared to the electrode without an MF. The experimental results indicate that an MF can induce the directional growth of Fe2O3 rods and reduce their accumulation. In addition, an external MF is beneficial for the lattice dislocation of the obtained catalysts, which can increase the surface free energy, thus reducing the activation energy and accelerating the electrochemical reaction kinetics. This work effectively combines a magnetic field with chemical corrosion and electrochemical energy, which offers a novel strategy for the large-scale development of environmentally friendly and superior electrocatalysts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article