Your browser doesn't support javascript.
loading
Mycobacterium vaccae attenuates airway inflammation by inhibiting autophagy and activating PI3K/Akt signaling pathway in OVA-induced allergic airway inflammation mouse model.
Xiao, Huan; Tang, An-Zhou; Xu, Mei-Li; Chen, Hong-Liu; Wang, Fan; Li, Chao-Qian.
Afiliação
  • Xiao H; Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China.
  • Tang AZ; Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China.
  • Xu ML; Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China.
  • Chen HL; Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China.
  • Wang F; Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China.
  • Li CQ; Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China. Electronic address: Lichaoqiangood@163.com.
Mol Immunol ; 173: 30-39, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39018745
ABSTRACT

PURPOSE:

The etiology of asthma remains elusive, with no known cure. Based on accumulating evidence, autophagy, a self-degradation process that maintains cellular metabolism and homeostasis, participates in the development of asthma. Mycobacterium vaccae vaccine (M. vaccae), an immunomodulatory agent, has previously been shown to effectively alleviate airway inflammation and airway remodeling. However, its therapeutic effect on asthma via the regulation of autophagy remains unknown. Therefore, this study aimed to investigate the impact of M. vaccae in attenuating asthma airway inflammation via autophagy-mediated pathways.

METHODS:

Balb/c mice were used to generate an ovalbumin (OVA)-immunized allergic airway model and were subsequently administered either M. vaccae or M. vaccae + rapamycin (an autophagy activator) prior to each challenge. Next, airway inflammation, mucus secretion, and airway remodeling in mouse lung tissue were assessed via histological analyses. Lastly, the expression level of autophagy proteins LC3B, Beclin1, p62, and autolysosome was determined both in vivo and in vitro, along with the expression level of p-PI3K, PI3K, p-Akt, and Akt in mouse lung tissue.

RESULTS:

The findings indicated that aerosol inhalation of M. vaccae in an asthma mouse model has the potential to decrease eosinophil counts, alleviate airway inflammation, mucus secretion, and airway remodeling through the inhibition of autophagy. Likewise, M. vaccae could reduce the levels of OVA-specific lgE, IL-5, IL-13, and TNF-α in asthma mouse models by inhibiting autophagy. Furthermore, this study revealed that M. vaccae also suppressed autophagy in IL-13-stimulated BEAS-2B cells. Moreover, M. vaccae may activate the PI3K/Akt signaling pathway in the lung tissue of asthmatic mice.

CONCLUSION:

In summary, the present study suggests that M. vaccae may contribute to alleviating airway inflammation and remodeling in allergic asthma by potentially modulating autophagy and the PI3K/Akt signaling pathway. These discoveries offer a promising avenue for the development of therapeutic interventions targeting allergic airway inflammation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Asma / Autofagia / Transdução de Sinais / Ovalbumina / Inflamação / Mycobacteriaceae Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Asma / Autofagia / Transdução de Sinais / Ovalbumina / Inflamação / Mycobacteriaceae Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article