Your browser doesn't support javascript.
loading
Groundwater health risk assessment and its temporal and spatial evolution based on trapezoidal fuzzy number-Monte Carlo stochastic simulation: A case study in western Jilin province.
Li, Tao; Bian, Jianmin; Ruan, Dongmei; Xu, Liwen; Zhang, Siting.
Afiliação
  • Li T; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
  • Bian J; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
  • Ruan D; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China. Electronic address: ruan18188417591@126.c
  • Xu L; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
  • Zhang S; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
Ecotoxicol Environ Saf ; 282: 116736, 2024 Sep 01.
Article em En | MEDLINE | ID: mdl-39024949
ABSTRACT
The United States Environmental Protection Agency (USEPA) Four-step-Method (FSM) is a straightforward and extensively utilized tool for evaluating regional health risks, However, the complex and heterogeneous groundwater environment system causes great uncertainty in the assessment process. Triangular stochastic simulation (TSS) possesses certain advantages in solving uncertainty problems, but its inadequacy with discrete data reveals limitations in this aspect. To solve the above problems, this study proposes to construct trapezoidal fuzzy number-Monte Carlo stochastic simulation (TFN-MCSS) to compensate for the shortcomings of the first two methods. This method adopted trapezoidal fuzzy number (TFN) analysis to comprehensively consider the characteristics of a large dispersion of water quality monitoring data and the uncertainty of the human health risk assessment (HHRA) process. Concurrently, to overcome the subjectivity and uncertainty of artificially determining the interval of TFN in traditional methods, the slope was used to select the most probable interval value (TMPIV) of TFN combined with the α-truncated set technique (α-TST) and MCSS. Based on these, a TFN-MCSS was constructed and applied to groundwater HHRA in western Jilin Province. First, the groundwater chemical characteristic determination and water quality evaluation in western Jilin were performed to identify the main pollution indicators, and the health risk effects of pollutants in groundwater of different aquifers at different time periods on adults and children were evaluated using the TFN-MCSS. The uncertainty and sensitivity were analyzed, and the primary risk control indicators were identified and compared to FSM and TSS. The results reveal that TFN-MCSS was more sensitive to data and could reduce the uncertainty of assessment process. It indicated that over a 10-year period, the health risks associated with unconfined groundwater (UW) and confined water (CW) decreased by greater than 52 %. However, the highest total non-carcinogenic risk index (THI) was 1.3-fold higher than the safety threshold, and this posed a health risk.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea / Qualidade da Água / Monitoramento Ambiental / Método de Monte Carlo / Processos Estocásticos / Lógica Fuzzy Limite: Humans País/Região como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea / Qualidade da Água / Monitoramento Ambiental / Método de Monte Carlo / Processos Estocásticos / Lógica Fuzzy Limite: Humans País/Região como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article