Your browser doesn't support javascript.
loading
A novel PEG-mediated approach to entrap hemoglobin (Hb) within ZIF-8 nanoparticles: Balancing crystalline structure, Hb content and functionality.
Coll-Satue, Clara; Rubio-Huertas, Marta; Ducrot, Aurelie; Norkute, Evita; Liu, Xiaoli; Ebrahim, Fatmah Mish; Smit, Berend; Thulstrup, Peter Waaben; Hosta-Rigau, Leticia.
Afiliação
  • Coll-Satue C; Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
  • Rubio-Huertas M; Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
  • Ducrot A; Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
  • Norkute E; Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
  • Liu X; Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
  • Ebrahim FM; Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering, Valais, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951 Sion, Switzerland.
  • Smit B; Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering, Valais, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951 Sion, Switzerland.
  • Thulstrup PW; Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Hosta-Rigau L; Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark. Electronic address: leri@dtu.dk.
Biomater Adv ; 163: 213953, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39029206
ABSTRACT
Hemoglobin (Hb)-based oxygen carriers are investigated as a potential alternative or supplement to regular blood transfusions, particularly in critical and life-threatening scenarios. These include situations like severe trauma in remote areas, battlefield conditions, instances where blood transfusion is not feasible due to compatibility concerns, or when patients decline transfusions based on religious beliefs. This study introduces a novel method utilizing poly(ethylene glycol) (PEG) to entrap Hb within ZIF-8 nanoparticles (i.e., Hb@ZIF-8 NPs). Through meticulous screening, we achieved Hb@ZIF-8 NPs with a record-high Hb concentration of 34 mg mL-1. These NPs, sized at 168 nm, displayed exceptional properties a remarkable 95 % oxyhemoglobin content, excellent encapsulation efficiency of 85 %, and resistance to Hb oxidation into methemoglobin (metHb). The addition of PEG emerged as a crucial factor amplifying Hb entrapment within ZIF-8, especially at higher Hb concentrations, reaching an unprecedented 34 mg mL-1. Importantly, PEG exhibited a protective effect, preventing metHb conversion in Hb@ZIF-8 NPs at elevated Hb concentrations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Hemoglobinas / Nanopartículas Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Hemoglobinas / Nanopartículas Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article