Your browser doesn't support javascript.
loading
Modulating crystal facets of photoanodes for photoelectrocatalytic scalable degradation of fluorinated pharmaceuticals in wastewater.
Chi, Haibo; Ma, Jiangping; Duan, Ruizhi; Wang, Aoqi; Qiao, Yafei; Wang, Wangyin; Li, Can.
Afiliação
  • Chi H; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Ma J; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Ch
  • Duan R; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Ch
  • Wang A; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Qiao Y; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang W; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Li C; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of ad
Water Res ; 262: 122101, 2024 Sep 15.
Article em En | MEDLINE | ID: mdl-39032329
ABSTRACT
Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Águas Residuárias Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Águas Residuárias Idioma: En Ano de publicação: 2024 Tipo de documento: Article