Ornaments for efficient allele-specific expression estimation with bias correction.
Am J Hum Genet
; 111(8): 1770-1781, 2024 Aug 08.
Article
em En
| MEDLINE
| ID: mdl-39047729
ABSTRACT
Allele-specific expression plays a crucial role in unraveling various biological mechanisms, including genomic imprinting and gene expression controlled by cis-regulatory variants. However, existing methods for quantification from RNA-sequencing (RNA-seq) reads do not adequately and efficiently remove various allele-specific read mapping biases, such as reference bias arising from reads containing the alternative allele that do not map to the reference transcriptome or ambiguous mapping bias caused by reads containing the reference allele that map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and accurate estimation of allele-specific transcript expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-specific read mapping biases. Ornaments removes reference bias by mapping reads to a personalized transcriptome and ambiguous mapping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias correction in allele-specific read mapping. In experiments with simulated and human lymphoblastoid cell-line RNA-seq reads with the genomes of the 1000 Genomes Project, we demonstrate that Ornaments improves the accuracy of WASP and kallisto, is nearly as efficient as kallisto, and is an order of magnitude faster than WASP per sample, with the additional cost of constructing a personalized index for multiple samples. Additionally, we show that Ornaments finds imprinted transcripts with higher sensitivity than WASP, which detects imprinted signals only at gene level.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Alelos
Limite:
Humans
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article