Your browser doesn't support javascript.
loading
Densitometric analysis of GnRH and IBA1 immunocytochemistry in the basal ventromedial hypothalamus of the ewe.
Merchán, M; Plaza, I; Nieto, J; Plaza, J; Abecia, J A; Palacios, C.
Afiliação
  • Merchán M; Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Avda. Filiberto Villalobos, 119, 37007, Salamanca, Spain.
  • Plaza I; Auditory Neuroplasticity Laboratory, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca. Salamanca. Calle del Pintor Fernando Gallego, 2, 37007, Spain.
  • Nieto J; Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Avda. Filiberto Villalobos, 119, 37007, Salamanca, Spain.
  • Plaza J; Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Avda. Filiberto Villalobos, 119, 37007, Salamanca, Spain.
  • Abecia JA; IUCA. Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.
  • Palacios C; Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Avda. Filiberto Villalobos, 119, 37007, Salamanca, Spain. Electronic address: carlospalacios@usal.es.
Theriogenology ; 227: 112-119, 2024 Oct 01.
Article em En | MEDLINE | ID: mdl-39053287
ABSTRACT
Gonadotropin releasing hormone (GnRH) synthesis and secretion regulates seasonal fertility. In the brain, the distribution of GnRH-positive neurons is diffuse, hindering efforts to monitor variations in its cellular and tissue levels. Here, we aim at assessing GnRH immunoreactivity in nuclei responsible for seasonal fertility regulation (SFR) within the posterior, anterior, and preoptic areas of the basal hypothalamus during estrous in ewes. We detected reaction products in the ventromedial basal hypothalamus in neurons, nerve fibers, non-neuronal immunoreactive bodies, and diffuse interstitial areas. Immunoreactivity correlated with the distribution of the main SFR nuclei in the arcuate, retrochiasmatic, periventricular, medial preoptic, supraoptic, and preoptic areas. By independent component analysis density segmentation and by interferential contrast, we identified GnRH non-neuronal positive bodies as microglial cells encapsulated within a dense halo of reaction products. These GnRH-positive microglial cells were distributed in patches and rows throughout the basal ventromedial hypothalamus, suggesting their role in paracrine or juxtacrine signaling. Moreover, as shown by ionized calcium-binding adaptor molecule 1 (IBA1) immunocytochemistry, the distribution of GnRH reaction products overlapped with the microglial dense reactive zones. Therefore, our findings support the assertion that a combined densitometric analysis of GnRH and IBA1 immunocytochemistry enables activity mapping for monitoring seasonal changes following experimental interventions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imuno-Histoquímica / Hormônio Liberador de Gonadotropina Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imuno-Histoquímica / Hormônio Liberador de Gonadotropina Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article