Your browser doesn't support javascript.
loading
Mycorrhizal association controls soil carbon-degrading enzyme activities and soil carbon dynamics under nitrogen addition: A systematic review.
Hu, Yuanliu; Chen, Ji; Olesen, Jørgen E; van Groenigen, Kees Jan; Hui, Dafeng; He, Xinhua; Chen, Guoyin; Deng, Qi.
Afiliação
  • Hu Y; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China; Departmen
  • Chen J; Department of Agroecology, Aarhus University, 8830 Tjele, Denmark; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710001 Xi'an, China; Institute of Global Environmental Change, Department of Earth & Environmental Science, School
  • Olesen JE; Department of Agroecology, Aarhus University, 8830 Tjele, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark.
  • van Groenigen KJ; Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
  • Hui D; Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA.
  • He X; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Sciences, University of Western A
  • Chen G; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
  • Deng Q; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou, Guangdong 510650, China. Electronic address: dengqi@scbg.ac.cn.
Sci Total Environ ; 948: 175008, 2024 Oct 20.
Article em En | MEDLINE | ID: mdl-39053526
ABSTRACT
Recent evidence suggests that changes in carbon-degrading extracellular enzyme activities (C-EEAs) can help explain soil organic carbon (SOC) dynamics under nitrogen (N) addition. However, the factors controlling C-EEAs remain unclear, impeding the inclusion of microbial mechanisms in global C cycle models. Using meta-analysis, we show that the responses of C-EEAs to N addition were best explained by mycorrhizal association across a wide range of environmental and experimental factors. In ectomycorrhizal (ECM) dominated ecosystems, N addition suppressed C-EEAs targeting the decomposition of structurally complex macromolecules by 13.1 %, and increased SOC stocks by 5.2 %. In contrast, N addition did not affect C-EEAs and SOC stocks in arbuscular mycorrhizal (AM) dominated ecosystems. Our results indicate that earlier studies may have overestimated SOC changes under N addition in AM-dominated ecosystems and underestimated SOC changes in ECM-dominated ecosystems. Incorporating this mycorrhizal-dependent impact of EEAs on SOC dynamics into Earth system models could improve predictions of SOC dynamics under environmental changes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Microbiologia do Solo / Carbono / Micorrizas / Nitrogênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Microbiologia do Solo / Carbono / Micorrizas / Nitrogênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article