Your browser doesn't support javascript.
loading
Kinetic Study and Reaction Mechanism of the Gas-Phase Thermolysis Reaction of Methyl Derivatives of 1,2,4,5-Tetroxane.
Bordón, Alexander G; Profeta, Mariela I; Romero, Jorge M; Jorge, María J; Jorge, Lilian C; Jorge, Nelly L; Sainz-Díaz, C Ignacio; Cuéllar-Zuquin, Juliana; Roca-Sanjuán, Daniel; Viseras Iborra, César; Grand, André; Hernández-Laguna, Alfonso.
Afiliação
  • Bordón AG; Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina.
  • Profeta MI; Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina.
  • Romero JM; Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina.
  • Jorge MJ; Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina.
  • Jorge LC; Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina.
  • Jorge NL; Laboratorio de Investigaciones en Tecnología Ambiental, Área de Química Física Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina.
  • Sainz-Díaz CI; Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Av. Las Palmeras 4, 18100 Armilla, Granada, Spain.
  • Cuéllar-Zuquin J; Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, 46071 Valencia, Spain.
  • Roca-Sanjuán D; Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, 46071 Valencia, Spain.
  • Viseras Iborra C; Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Av. Las Palmeras 4, 18100 Armilla, Granada, Spain.
  • Grand A; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
  • Hernández-Laguna A; Unité de Formation et de Recherche, Université Grenoble Alpes, Commissariat á l'Énergy Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Nanoscience and Cryogenics-Systèmes Moléculaires et Nanomatériaux por l'Énergieset la Santé (INAC-SyMMES), 38000 Grenoble, France.
Molecules ; 29(14)2024 Jul 11.
Article em En | MEDLINE | ID: mdl-39064853
ABSTRACT
Tetroxane derivatives are interesting drugs for antileishmaniasis and antimalaric treatments. The gas-phase thermal decomposition of 3,6,-dimethyl-1,2,4,5-tetroxane (DMT) and 3,3,6,6,-tetramethyl-1,2,4,5-tetroxane (acetone diperoxide (ACDP)) was studied at 493-543 K by direct gas chromatography by means of a flow reactor. The reaction is produced in the injector chamber at different temperatures. The resulting kinetics Arrhenius equations were calculated for both tetroxanes. Including the parent compound of the series 1,2,4,5-tetroxane (formaldehyde diperoxide (FDP)), the activation energy and frequency factors decrease linearly with the number of methyl groups. The reaction mechanisms of ACDP and 3,6,6-trimethyl-1,2,4,5-tetroxane (TMT) decomposition have been studied by means of the DFT method with the BHANDHLYP functional. Our calculations confirm that the concerted mechanism should be discarded and that only the stepwise mechanism occurs. The critical points of the singlet and triplet state potential energy surfaces (S- and T-PES) of the thermolysis reaction of both compounds have been determined. The calculated activation energies of the different steps vary linearly with the number of methyl groups of the methyl-tetroxanes series. The mechanism for the S-PES leads to a diradical O···O open structure, which leads to a C···O dissociation in the second step and the production of the first acetaldehyde/acetone molecule. This last one yields a second C···O dissociation, producing O2 and another acetone/acetaldehyde molecule. The O2 molecule is in the singlet state. A quasi-parallel mechanism for the T-PES from the open diradical to products is also found. Most of the critical points of both PES are linear with the number of methyl groups. Reaction in the triplet state is much more exothermic than the singlet state mechanism. Transitions from the singlet ground state, S0 and low-lying singlet states S1-3, to the low-lying triplet excited states, T1-4, (chemical excitation) in the family of methyl tetroxanes are also studied at the CASSCF/CASPT2 level. Two possible mechanisms are possible here (i) from S0 to T3 by strong spin orbit coupling (SOC) and subsequent fast internal conversion to the excited T1 state and (ii) from S0 to S2 from internal conversion and subsequent S2 to T1 by SOC. From these experimental and theoretical results, the additivity effect of the methyl groups in the thermolysis reaction of the methyl tetroxane derivatives is clearly highlighted. This information will have a great impact for controlling these processes in the laboratory and chemical industries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article