Your browser doesn't support javascript.
loading
Molecular-level insight into the effects of low moisture and trehalose on the thermostability of ß-glucosidase.
Jiang, Lian; Tian, Yongli; Zhang, Haide; Liu, Shisheng.
Afiliação
  • Jiang L; School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, C
  • Tian Y; School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, C
  • Zhang H; School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, C
  • Liu S; School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, C
Food Chem ; 460(Pt 2): 140607, 2024 Jul 24.
Article em En | MEDLINE | ID: mdl-39068804
ABSTRACT
The high temperature induces conformational changes in ß-glucosidase, making it inactive and limiting its application field. In this paper, the effect of trehalose on the thermostability of ß-glucosidase from low-moisture Hevea brasiliensis seeds was investigated. The results showed that the residual enzyme activities of ß-glucosidase supplemented with trehalose after high-temperature treatment were significantly higher than that of the control group. The improvement of thermostability could be explained by low-field nuclear magnetic resonance (LF-NMR) and molecular dynamics (MD) simulations at the molecular level. Moreover, adding trehalose increased the water activity and water content of ß-glucosidase, leading to a more stable conformation. Trehalose replaced some water and formed a stable network of hydrogen bonds with protein and surrounding water. The glass formed by trehalose also reduced molecular movement, thus providing good protection for enzymes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article