Your browser doesn't support javascript.
loading
Active mechanical cloaking for unsupervised damage resilience in programmable elastic metamaterials.
Kundu, D; Naskar, S; Mukhopadhyay, T.
Afiliação
  • Kundu D; Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, USA.
  • Naskar S; Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK.
  • Mukhopadhyay T; Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK.
Philos Trans A Math Phys Eng Sci ; 382(2278): 20230360, 2024 Sep 09.
Article em En | MEDLINE | ID: mdl-39069765
ABSTRACT
Owing to the architected void-filled low-density configurations, metamaterials are prone to defects during the complex manufacturing process, or damages under operational conditions. Recently mechanical cloaking has been proposed to shield the effect of such disorders in terms of homogenized mechanical responses. The major drawback in these studies are that the damage location should be known a priori, and the cloak is designed around that damaged zone before manufacturing. Such postulation does not allow unsupervised damage resilience during the manufacturing and service life of metamaterials by active reconfiguration of the stress field depending on the random and unpredictable evolution of damage. Here, we propose a radically different approach by introducing piezoelectric lattices where the effect of random appearance of any single or multiple disorders and damages with complex shapes, sizes and distributions can be shielded through active multi-physically controlled cloaks by voltage-dependent modulation of the stress fields within the cloaking region. Notably, this can be achieved without breaking periodicity and any additional material in the cloaking region unlike earlier studies concerning mechanical cloaks. The proposed active class of elastic metamaterials will bring a step-change in the on-demand mechanical performance of critically important structural components and unsupervised damage resilience for enhanced durability and sustainability.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article