Your browser doesn't support javascript.
loading
Development of a high quantum yield probe for detection of mitochondrial G-quadruplexes in live cells based on fluorescence lifetime imaging microscopy.
Chen, Kai-Yi; Zeng, You-Liang; Mao, Zong-Wan; Liu, Wenting.
Afiliação
  • Chen KY; Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Zeng YL; Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Mao ZW; Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China. Electronic address: cesmzw@mail.sysu.edu.cn.
  • Liu W; Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China. Electronic address: liuwenting@mail.sysu.edu.cn.
Bioorg Med Chem ; 111: 117856, 2024 Jul 23.
Article em En | MEDLINE | ID: mdl-39074413
ABSTRACT
Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article