Your browser doesn't support javascript.
loading
Impact of cathodic pH and bioaugmentation on acetate and CH4 production in a microbial electrosynthesis cell.
Nwanebu, Emmanuel; Jezernik, Mara; Lawson, Christopher; Bruant, Guillaume; Tartakovsky, Boris.
Afiliação
  • Nwanebu E; Energy, Mining and Environment Research Centre, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada Boris.Tartakovsky@cnrc-nrc.gc.ca.
  • Jezernik M; Department of Chemical Engineering & Applied Chemistry, University of Toronto Toronto Canada.
  • Lawson C; Department of Chemical Engineering & Applied Chemistry, University of Toronto Toronto Canada.
  • Bruant G; Energy, Mining and Environment Research Centre, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada Boris.Tartakovsky@cnrc-nrc.gc.ca.
  • Tartakovsky B; Energy, Mining and Environment Research Centre, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada Boris.Tartakovsky@cnrc-nrc.gc.ca.
RSC Adv ; 14(32): 22962-22973, 2024 Jul 19.
Article em En | MEDLINE | ID: mdl-39086992
ABSTRACT
This study compares carbon dioxide conversion in carbonate-fed microbial electrosynthesis (MES) cells operated at low (5.3), neutral (7) and high (8) pH levels and inoculated either with wild-type or bioaugmented mixed microbial populations. Two 100 mL (cathode volume) MES cells inoculated with anaerobic digester sludge were operated with a continuous supply of carbonate solution (5 g L-1 as CO3 2-). Acetate production was highest at low pH, however CH4 production still persisted, possibly due to pH gradients within the cathodic biofilm, resulting in acetate and CH4 volumetric (per cathode compartment volume) production rates of 1.0 ± 0.1 g (Lc d)-1 and 0.84 ± 0.05 L (Lc d)-1, respectively. To enhance production of carboxylic acids, four strains of acetogenic bacteria (Clostridium carboxidivorans, Clostridium ljungdahlii, Clostridium autoethanogenum, and Eubacterium limosum) were added to both MES cells. In the bioaugmented MES cells, acetate production increased to 2.0 g (Lc d)-1. However, production of other carboxylic acids such as butyrate and caproate was insignificant. Furthermore, 16S rRNA gene sequencing of cathodic biofilm and suspended biomass suggested a low density of introduced acetogenic bacteria implying that selective pressure rather than bioaugmentation led to improved acetate production.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article