Your browser doesn't support javascript.
loading
A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin.
Huang, Yuhang; Zhang, Linqing; Sun, Yuecen; Liu, Qing; Chen, Jie; Qian, Xiaoyun; Gao, Xia; Zhu, Guang-Jie; Wan, Guoqiang.
Afiliação
  • Huang Y; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Zhang L; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Sun Y; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Liu Q; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Chen J; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Qian X; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Gao X; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Zhu GJ; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
  • Wan G; MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu
J Genet Genomics ; 2024 Aug 05.
Article em En | MEDLINE | ID: mdl-39098598
ABSTRACT
Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death. Expression of the mutant CGN in the inner ear results in severe hair cell death and hearing loss in mice, resembling the auditory phenotype in human patients. Interestingly, a human-specific residue (V1112) in the neopeptide generated by the frameshift mutation is critical for the aggregation and cytotoxicity of the mutant human CGN. Moreover, the expression of heat shock factor 1 (HSF1) decreases the accumulation of insoluble mutant CGN aggregates and rescues cell death. In summary, these findings identify mutant-specific toxic polypeptides as a disease-causing mechanism of the deafness mutation in CGN, which can be targeted by the expression of the cell chaperone response regulator HSF1.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article