An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies.
Immunity
; 57(10): 2453-2465.e7, 2024 Oct 08.
Article
em En
| MEDLINE
| ID: mdl-39163866
ABSTRACT
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and the inaccessibility of datasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of the antibody response to the influenza virus but also provides a valuable resource for applying deep learning to antibody research.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Glicoproteínas de Hemaglutininação de Vírus da Influenza
/
Anticorpos Antivirais
/
Especificidade de Anticorpos
Limite:
Animals
/
Humans
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article