Your browser doesn't support javascript.
loading
An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies.
Wang, Yiquan; Lv, Huibin; Teo, Qi Wen; Lei, Ruipeng; Gopal, Akshita B; Ouyang, Wenhao O; Yeung, Yuen-Hei; Tan, Timothy J C; Choi, Danbi; Shen, Ivana R; Chen, Xin; Graham, Claire S; Wu, Nicholas C.
Afiliação
  • Wang Y; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Lv H; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Teo QW; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Lei R; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Gopal AB; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Ouyang WO; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Yeung YH; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
  • Tan TJC; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Choi D; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Shen IR; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Chen X; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Graham CS; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • Wu NC; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL
Immunity ; 57(10): 2453-2465.e7, 2024 Oct 08.
Article em En | MEDLINE | ID: mdl-39163866
ABSTRACT
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and the inaccessibility of datasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of the antibody response to the influenza virus but also provides a valuable resource for applying deep learning to antibody research.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicoproteínas de Hemaglutininação de Vírus da Influenza / Anticorpos Antivirais / Especificidade de Anticorpos Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicoproteínas de Hemaglutininação de Vírus da Influenza / Anticorpos Antivirais / Especificidade de Anticorpos Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article