Non-Ionic Peterson-Type Olefination Reactivity and its Use in a Silicon-Promoted Carbonyl-Carbonyl Cross Coupling Reaction.
Angew Chem Int Ed Engl
; : e202411265, 2024 Aug 26.
Article
em En
| MEDLINE
| ID: mdl-39183714
ABSTRACT
The [2+2] cycloaddition reaction between the Si=C double bond of adamantylsilene and the carbonyl group of aliphatic, aromatic or acetylenic ketones and aldehydes is demonstrated. The product of this reaction that is central to a non-ionic version of the Peterson olefination is an unusual four-membered 1,2-silaoxetane heterocycle that was characterized spectroscopically and crystallographically. In the presence of SiO2, the silaoxetane undergoes retro-cycloaddition with the formation of alkene products. As the [2+2] cycloaddition proceeds without the necessity of any base, enolizable ketones can be converted into olefins. In addition, it is shown that the adamantylsilene can be produced inâ
situ by a sila-Peterson reaction, providing valuable input for the development of a new one-pot silicon-based reductive carbonyl-carbonyl cross coupling methodology.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article