Your browser doesn't support javascript.
loading
Metagenomic and isotopic insights into carbon fixation by autotrophic microorganisms in a petroleum hydrocarbon impacted red clay aquifer.
Ning, Zhuo; Sheng, Yizhi; Gan, Shuang; Guo, Caijuan; Wang, Shuaiwei; Cai, Pingping; Zhang, Min.
Afiliação
  • Ning Z; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China.
  • Sheng Y; Frontiers Science Center for Deep-Time Digital Earth, Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
  • Gan S; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China; Hefei University of Technology, Hefei, 230009, China.
  • Guo C; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China.
  • Wang S; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China.
  • Cai P; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050061, China.
  • Zhang M; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China. Electronic address: zhangmin@mail.cgs.gov.cn.
Environ Pollut ; 361: 124824, 2024 Aug 26.
Article em En | MEDLINE | ID: mdl-39197642
ABSTRACT
Autotrophic microorganisms, the pivotal carbon fixers, exhibit a broad distribution across diverse environments, playing critical roles in the process of carbon sequestration. However, insights into their distribution characteristics in aquifers, particularly in those petroleum-hydrocarbon-contaminated (PHC) aquifers that were known for rich in heterotrophs, have been limited. In the study, groundwater samples were collected from red clay aquifers in the storage tank leakage area of a PHC site, a prevalent aquifer type in southern China and other regions. Metagenomics combined with hydrochemical and inorganic carbon isotope analyses were employed to elucidate the presence of microbial carbon fixation and its driving forces. Results showed that there were hundreds of autotrophic microorganisms participating in distinct carbon fixation processes in the red clay PHC aquifers. Reductive tricarboxylic acid (rTCA) and dicarboxylate/4-hydroxybutyrate (DC/4HB), as well as 3-hydroxypropionate (3HP or/and 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB)) were the predominant carbon fixation pathways. The abundances of carbon fixation genes and autotrophic microorganisms were significantly and positively correlated with hydrocarbon concentrations and δ13C of dissolved inorganic carbon (δ13C-DIC) values. This finding indicated that the petroleum hydrocarbon significantly promoted the proliferation of carbon fixation microorganisms, leading to a substantial uptake of inorganic carbon. Therefore, we deduce that this process holds considerable potential for carbon sequestration in PHC-contaminated aquifers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article