Your browser doesn't support javascript.
loading
Design, synthesis and bioactivity evaluation of triazole antifungal drugs with phenylthiophene structure.
Wu, Xudong; Zhang, Jiachen; Liu, Rongrong; Sun, Yixiang; Gao, Zixuan; Zhang, Guoqi; Luo, Zirui; Li, Kejian; Qin, Qiaohua; Liu, Nian; Zhang, Haoyu; Su, Xin; Zhao, Dongmei; Cheng, Maosheng.
Afiliação
  • Wu X; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Zhang J; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Liu R; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Sun Y; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Gao Z; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Zhang G; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Luo Z; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Li K; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Qin Q; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Liu N; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Zhang H; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Su X; The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
  • Zhao D; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China. Electronic address: medchemzhao@163.com.
  • Cheng M; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
Bioorg Chem ; 153: 107785, 2024 Sep 06.
Article em En | MEDLINE | ID: mdl-39255609
ABSTRACT
Invasive fungal infections have high morbidity and mortality rates and have become one of the most serious threats to human health. In the present study, a series of triazole antifungal derivatives with phenylthiophene backbone were obtained by structural modification of the lead compound using Iodiconazole as the lead compound. Among them, compound 19g is a triazole antifungal compound with 4-chloro-2-fluoro phenylthiophene backbone, which showed optimal antifungal activity against Candida albicans, Cryptococcus neoformans, and Aspergillus, with a MIC80 value of 0.0625 µg/mL. In addition, compounds 19e, 19f, 19g, 19h, 19i and 19k exhibited different levels of inhibitory activity against fluconazole-resistant strains with MIC80 values ranging from 0.0625 µg/mL to 32 µg/mL. Since compound 19g had optimal in vitro antifungal activity, we selected 19g for human liver microsomal stability and CYP enzyme inhibition assays as well as further evaluated the inhibitory activity of compound 19g on normal and cancerous cells in humans. Finally, we verified the inhibitory effect of compound 19g on the filamentation of Candida albicans and determined the mechanism of action by sterol composition analysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article