A Model to Account for the Effects of Load Ratio and Hydrogen Pressure on the Fatigue Crack Growth Behavior of Pressure Vessel Steels.
Materials (Basel)
; 17(17)2024 Aug 30.
Article
em En
| MEDLINE
| ID: mdl-39274698
ABSTRACT
A phenomenological model for estimating the effects of load ratio R and hydrogen pressure PH2 on the hydrogen-assisted fatigue crack growth rate (HA-FCGR) behavior in the transient and steady-state regimes of pressure vessel steels is described. The "transient regime" is identified with crack growth within a severely embrittled zone of intense plasticity at the crack tip. The "steady-state" behavior is associated with the crack growing into a region of comparatively lower hydrogen concentration located further away from the crack tip. The model treats the effects of R and PH2 as being functionally separable. In the transient regime, the effects of the hydrogen pressure on the HA-FCGR behavior were negligible but were significant in the steady-state regime. The hydrogen concentration in the steady-state region is modeled as being dependent on the kinetics of lattice diffusion, which is sensitive to pressure. Experimental HA-FCGR data from the literature were used to validate the model. The new model was shown to be valid over a wide range of conditions that ranged between -1≤R≤0.8 and 0.02≤PH2≤103 MPa for pressure vessel steels.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article