Metabotropic glutamate receptors-guardians and gatekeepers in neonatal hypoxic-ischemic brain injury.
Pharmacol Rep
; 2024 Sep 17.
Article
em En
| MEDLINE
| ID: mdl-39289333
ABSTRACT
Injury to the developing central nervous system resulting from perinatal hypoxia-ischemia (HI) is still a clinical challenge. The only approach currently available in clinical practice for severe cases of HI is therapeutic hypothermia, initiated shortly after birth and supported by medications to regulate blood pressure, control epileptic seizures, and dialysis to support kidney function. However, these treatments are not effective enough to significantly improve infant survival or prevent brain damage. The need to create a new effective therapy has focused attention on metabotropic glutamate receptors (mGluR), which control signaling pathways involved in HI-induced neurodegeneration. The complexity of mGluR actions, considering their localization and developmental changes, and the functions of each subtype in HI-evoked brain damage, combined with difficulties in the availability of safe and effective modulators, raises the question whether modulation of mGluRs with subtype-selective ligands can become a new treatment in neonatal HI. Addressing this question, this review presents the available information concerning the role of each of the eight receptor subtypes of the three mGluR groups (group I, II, and III). Data obtained from experiments performed on in vitro and in vivo neonatal HI models show the neuroprotective potential of group I mGluR antagonists, as well as group II and III agonists. The information collected in this work indicates that the neuroprotective effects of manipulating mGluR in experimental HI models, despite the need to create more safe and selective ligands for particular receptors, provide a chance to create new therapies for the sensitive brains of infants at risk.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article