Your browser doesn't support javascript.
loading
Isolation and identification of a salt-tolerant Coelastrum sp. and exploration of its potential for biodiesel production.
Xu, Jing; Wang, Han; Liu, Jixin; Ge, Jingping; Lin, Yimeng; Ping, Wenxiang.
Afiliação
  • Xu J; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Scien
  • Wang H; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Scien
  • Liu J; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Scien
  • Ge J; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Scien
  • Lin Y; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, China.
  • Ping W; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Scien
Prep Biochem Biotechnol ; : 1-10, 2024 Sep 24.
Article em En | MEDLINE | ID: mdl-39315946
ABSTRACT
Given the escalating demand for renewable biofuels amidst the continual consumption of fossil energy, the exploration and identification of microalgal strains for biodiesel production have become crucial. In this study, a microalgal strain named HDMA-12 was isolated from Lake Chenjiadayuan in China to evaluate its biodiesel potential. Phylogenetic analysis of its internal transcribed spacer sequences revealed HDMA-12 as a new molecular record in the genus Coelastrum. When cultivated in BG11 basal medium, HDMA-12 achieved a biomass of 635.7 mg L-1 and a lipid content of 26.4%. Furthermore, the fatty acid methyl ester profile of HDMA-12 exhibited favorable combustion characteristics. Subjected to 200 mM NaCl stress, HDMA-12 reached its maximum biomass of 751.5 mg L-1 and a lipid content of 28.9%. These findings indicate the promising prospects of HDMA-12 as a promising microalgal strain for further advancements in biodiesel production.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article