Possible effects of the detachment of stromal lamellae from granal stacks on salt-induced changes in spillover. A study by sonication of chloroplasts.
Biochim Biophys Acta
; 635(2): 317-26, 1981 Apr 13.
Article
em En
| MEDLINE
| ID: mdl-7236666
Salt-induced chlorophyll fluorescence and spillover changes in control and briefly sonicated chloroplasts have been studied under conditions where Photosystem II traps are closed. In a low-salt medium containing 10 mM KCl, control envelope-free chloroplasts exhibited good spillover, as measured by low chlorophyll fluorescence yield at room temperature, a high ratio of the fluorescence peaks F735/F685 at 77 K, and increased Photosystem I activity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and Photosystem II light. In contrast, when stacked chloroplasts were briefly sonicated and subsequently diluted into a low-salt medium, a high fluorescence yield at room temperature and a low ratio of F735/F685 at 77 K persisted. When unstacked chloroplasts were sonicated and then diluted into a high-salt medium, the room temperature fluorescence yield remained low. The results are interpreted in terms of a model relating the changes in chlorophyll fluorescence with the lateral diffusion of Photosystem I and Photosystem II chlorophyll-protein complexes in the plane of the thylakoid membrane creating randomized or segregated domains, depending on the degree of electrostatic screening of surface charges (Barber, J. (1980) FEBS Lett. 188, 1-10). It is argued that brief sonication of stacked chloroplasts separates stromal membranes from granal stacks, thus limiting the inter-mixing of the photosystems via lateral diffusion even when the ionic composition of the medium is varied. Consequently energy transfer from Photosystem II to Photosystem I is relatively poor and chlorophyll fluorescence from Photosystem II is enhanced. The loss of the salt effect on sonicated unstacked membranes can also be accommodated by the model. In this case it seems that the generation of small membrane fragments does not allow the normal salt-induced phase separation of the pigment-protein complexes to occur.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fotossíntese
/
Cloroplastos
Tipo de estudo:
Clinical_trials
Idioma:
En
Ano de publicação:
1981
Tipo de documento:
Article