cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation.
J Biol Chem
; 270(5): 2158-62, 1995 Feb 03.
Article
em En
| MEDLINE
| ID: mdl-7530719
Hormonal regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is largely mediated via cAMP-dependent protein kinase (PKA). CFTR contains 10 dibasic consensus sites for potential PKA phosphorylation ((R/K) (R/K)X(S*/T*)). Previous studies (Chang, X.-B., Tabcharani, J. A., Hou, Y.-X., Jensen, T. J., Kartner, N., Alon, N., Hanrahan, J. W., and Riordan, J.R (1993) J. Biol. Chem. 268, 11304-11311) showed that approximately 25% of the CFTR wild-type response to PKA activation remained upon inhibition of most detectable phosphorylation by in vitro mutagenesis of all 10 dibasic consensus sites (10SA CFTR). To identify potential additional sites responsible for the residual activity, large amounts of this mutant CFTR were phosphorylated with PKA using high specific activity [gamma-32P]ATP. Cyanogen bromide cleavage indicated that a large portion of the observed PKA phosphorylation occurred within a 5.8-kDa fragment of the R domain between residues 722-773. Removal of serines at potential PKA sites in this fragment showed that Ser-753 accounted for all of the gamma-32P labeling of the 5.8-kDa peptide. Replacement of Ser-753 with alanine reduced the level of residual CFTR activity by a further 40%, indicating that phosphorylation at this previously unidentified site contributes to the activation of 10SA CFTR.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fosfosserina
/
Proteínas Quinases Dependentes de AMP Cíclico
/
Canais de Cloreto
/
Proteínas de Membrana
Limite:
Animals
/
Humans
Idioma:
En
Ano de publicação:
1995
Tipo de documento:
Article