GM-CSF triggers a rapid, glucose dependent extracellular acidification by TF-1 cells: evidence for sodium/proton antiporter and PKC mediated activation of acid production.
J Cell Physiol
; 154(1): 129-38, 1993 Jan.
Article
em En
| MEDLINE
| ID: mdl-7678263
The extracellular acidification rate of the human bone marrow cell line, TF-1, increases rapidly in response to a bolus of recombinant granulocyte-macrophage colony stimulating factor (GM-CSF). Extracellular acidification rates were measured using a silicon microphysiometer. This instrument contains micro-flow chambers equipped with potentiometric sensors to monitor pH. The cells are immobilized in a fibrin clot sandwiched between two porous polycarbonate membranes. The membranes are part of a disposable plastic "cell capsule" that fits into the microphysiometer flow chamber. The GM-CSF activated acidification burst is dose dependent and can be neutralized by pretreating the cytokine with anti-GM-CSF antibody. The acidification burst can be resolved kinetically into at least two components. A rapid component of the burst is due to activation of the sodium/proton antiporter as evidenced by its elimination in sodium-free medium and in the presence of amiloride. A slower component of the GM-CSF response is a consequence of increased glycolytic metabolism as demonstrated by its dependence on D-glucose as a medium nutrient. Okadaic acid (a phospho-serine/threonine phosphatase inhibitor), phorbol 12-myristate 13-acetate (PMA, a protein kinase C (PKC) activator), and ionomycin (a calcium ionophore) all produce metabolic bursts in TF-1 cells similar to the GM-CSF response. Pretreatment of TF-1 cells with PMA for 18 h resulted in loss of the GM-CSF acidification response. Although this treatment is reported to destroy protein kinase activity, we demonstrate here that it also down-regulates expression of high-affinity GM-CSF receptors on the surface of TF-1 cells. In addition, GM-CSF driven TF-1 cell proliferation was decreased after the 18 h PMA treatment. Short-term treatment with PMA (1-2 h) again resulted in loss of the GM-CSF acidification response, but without a decrease in expression of high-affinity GM-CSF receptors. Evidence for involvement of PKC in GM-CSF signal transduction was obtained using calphostin C, a specific inhibitor of PKC, which inhibited the GM-CSF metabolic burst at a subtoxic concentration. Genistein and herbimycin A, tyrosine kinase inhibitors, both inhibited the GM-CSF response of TF-1 cells, but only at levels high enough to also inhibit stimulation by PMA. These results indicate that GM-CSF activated extracellular acidification of TF-1 cells is caused by increases in sodium/proton antiporter activity and glycolysis, through protein kinase signalling pathways which can be both activated and down-regulated by PMA.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Medula Óssea
/
Proteína Quinase C
/
Transdução de Sinais
/
Proteínas de Transporte
/
Fator Estimulador de Colônias de Granulócitos e Macrófagos
/
Glucose
/
Naftalenos
Limite:
Humans
Idioma:
En
Ano de publicação:
1993
Tipo de documento:
Article