Your browser doesn't support javascript.
loading
Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network.
Lin, J S; Cheng, K S; Mao, C W.
Afiliação
  • Lin JS; Department of Electrical Engineering, National Cheng Kung University, Tainan.Taiwan, ROC.
Int J Biomed Comput ; 42(3): 205-14, 1996 Aug.
Article em En | MEDLINE | ID: mdl-8894776
This paper demonstrates a fuzzy Hopfield neural network for segmenting multispectral MR brain images. The proposed approach is a new unsupervised 2-D Hopfield neural network based upon the fuzzy clustering technique. Its implementation consists of the combination of 2-D Hopfield neural network and fuzzy c-means clustering algorithm in order to make parallel implementation for segmenting multispectral MR brain images feasible. For generating feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need for finding weighting factors in the energy function which is formulated and based on a basic concept commonly used in pattern classification, called the 'within-class scatter matrix' principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The experimental results show that a near optimal solution can be obtained using the fuzzy Hopfield neural network based on the within-class scatter matrix.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Aumento da Imagem / Infarto Cerebral / Redes Neurais de Computação / Lógica Fuzzy Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 1996 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Aumento da Imagem / Infarto Cerebral / Redes Neurais de Computação / Lógica Fuzzy Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 1996 Tipo de documento: Article