Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210050, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360569

Resumo

Scorpionism is a worldwide problem that has already made thousands of victims, and multi-disciplinary approaches for controlling their populations are to be more successful. Hens are often mentioned as tools for controlling scorpions; however, systematic/experimental behavioral studies are not available. Moreover, there is no systematic information on the effect of scorpion venoms on hens. Using the venomous yellow scorpion Tityus serrulatus, the present study aimed to clarify the following aspects: (1) voracity of hens, (2) how hens react when stung, (3) the effect of scorpion stings on hen behavior during attacks, and (4) hen survivorship after feeding on scorpions. Methods: We attracted hens with corn powder, offered them scorpions and then recorded the hen-scorpion interaction. To test the effects of the sting we manually removed the scorpion's telson. Results: We found that some hens ate up to six scorpions within minutes. By means of an ethogram and drawings, we showed that they exhibited several aversive behaviors when capturing scorpions. Removal of the scorpion telson stopped the aversive reactions, which was not observed in the control group. Finally, hens did not exhibit atypical behaviors after 1, 7 and 30 days and were all alive after 30 days. Conclusion: This is the first empirical and video recorded study providing evidence that hens are clearly affected by scorpion venom but do not die. Therefore, they may have potential to be used in biological control of these arthropods.(AU)


Assuntos
Animais , Venenos de Escorpião/intoxicação , Produtos Biológicos , Picadas de Escorpião , Escorpiões , Galinhas/metabolismo , Zea mays
2.
J. venom. anim. toxins incl. trop. dis ; 28: 20210034, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1365076

Resumo

The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.(AU)


Assuntos
Animais , Venenos de Artrópodes , Venenos de Escorpião , Venenos de Aranha , Toxicologia , Proteoma
3.
J. venom. anim. toxins incl. trop. dis ; 28: e20220026, 2022. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1418297

Resumo

Background: Scorpion neurotoxins such as those that modify the mammalian voltagegated sodium ion channels (Nav) are the main responsible for scorpion envenomation. Their neutralization is crucial in the production of antivenoms against scorpion stings. Methods: In the present study, two in silico designed genes ­ one that codes for a native neurotoxin from the venom of the Anatolian scorpion Androctonus crassicauda, named Acra 4 ­ and another non-native toxin ­ named consensus scorpion toxin (SccTx) obtained from the alignment of the primary structures of the most toxic neurotoxins from the Middle Eastern and North African scorpions ­ were recombinantly expressed in E. coli Origami. Results: Following bacterial expression, the two expressed neurotoxins, hereafter named HisrAcra4 and HisrSccTx, were obtained from inclusion bodies. Both recombinant neurotoxins were obtained in multiple Cys-Cys isoforms. After refolding, the active protein fractions were identified with molecular masses of 8,947.6 and 9,989.1 Da for HisrAcra4 and HisrSccTx, respectively, which agreed with their expected theoretical masses. HisrAcra4 and HisrSccTx were used as antigens to immunize two groups of rabbits, to produce either anti-HisrAcra4 or anti-HisrSccTx serum antibodies, which in turn could recognize and neutralize neurotoxins from venoms of scorpion species from the Middle East and North Africa. The antibodies obtained from rabbits neutralized the 3LD50 of Androctonus australis, Leiurus quinquestriatus hebraeus and Buthus occitanus venoms, but they did not neutralize A. crassicauda and A. mauritanicus venoms. In addition, the anti-HisrAcra4 antibodies did not neutralize any of the five scorpion venoms tested. However, an antibody blend of anti-HisrAcra4 and anti-HisrSccTx was able to neutralize A. crassicauda and A. mauritanicus venoms. Conclusions: Two recombinant Nav neurotoxins, from different peptide families, were used as antigens to generate IgGs for neutralizing scorpion venoms of species from the Middle East and North Africa.(AU)


Assuntos
Animais , Venenos de Escorpião/enzimologia , Neurotoxinas/análise , Proteínas Recombinantes/análise
4.
Acta sci. vet. (Impr.) ; 50: Pub.1860-2022. tab
Artigo em Português | VETINDEX | ID: biblio-1458535

Resumo

Background: Scorpionism is a worldwide medical issue, especially relevant in the tropical and subtropical countries. Tityusserrulatus is the species responsible for most cases in Brazil. Antivenom administration to victims is the sole specific therapyobtained from donor animals. Most of these donors suffer with symptoms of the poisoning, debilitating their health andreducing their life expectancy. The aim of the present research was to evaluate whether the immunogens prepared fromthe crude and detoxified venom of T. serrulatus promoted different changes in fractionated sheep plasma proteins, duringa scorpion antivenom serum production.Materials, Methods & Results: Twelve sheep, healthy, mean weight of 30 kg, were distributed into 3 groups (n = 4): G1(control), G2 (crude venom) and G3 (detoxified venom). The adopted immunization protocol (first cycle) had 6 doses, 3using Freund’s adjuvant, with a 21-day interval between each one (day 0, 22 and 43), and 3 doses with no adjuvant (booster)and 0.2 mg of antigen (reinforcement), spaced 3 days between each other (day 50, 53 and 56). Group control (G1) received6 immunizations with phosphate buffered saline (PBS) associated with Freund’s adjuvant (1:1), while the other 2 groupsreceived 0.5 mg of venom (G2) and detoxified venom (G3), respectively, diluted in PBS, associated with the Freund adjuvant. The boosters were 1/3 of the initial dose, diluted only PBS. At baseline (T0) and at 24 and 48 h after immunization,all animals underwent clinical examinations. Blood samples were collected at day 0, 22, 43, 53 and 56 for proteinogramanalysis. Total protein, albumin and globulins fractions were measured. Plasma albumin concentration at T0 ranged from3.41-4.86 g/dL, with a mean value of 4.12 g/dL. There was no statistical difference between...


Assuntos
Animais , Antivenenos , Ovinos/imunologia , Proteínas Sanguíneas/análise , Venenos de Escorpião/imunologia , Escorpiões , Soros Imunes
5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210047, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1375811

Resumo

Accidents with venomous animals are a public health issue worldwide. Among the species involved in these accidents are scorpions, spiders, bees, wasps, and other members of the phylum Arthropoda. The knowledge of the function of proteins present in these venoms is important to guide diagnosis, therapeutics, besides being a source of a large variety of biotechnological active molecules. Although our understanding about the characteristics and function of arthropod venoms has been evolving in the last decades, a major aspect crucial for the function of these proteins remains poorly studied, the posttranslational modifications (PTMs). Comprehension of such modifications can contribute to better understanding the basis of envenomation, leading to improvements in the specificities of potential therapeutic toxins. Therefore, in this review, we bring to light protein/toxin PTMs in arthropod venoms by accessing the information present in the UniProtKB/Swiss-Prot database, including experimental and putative inferences. Then, we concentrate our discussion on the current knowledge on protein phosphorylation and glycosylation, highlighting the potential functionality of these modifications in arthropod venom. We also briefly describe general approaches to study "PTM-functional-venomics", herein referred to the integration of PTM-venomics with a functional investigation of PTM impact on venom biology. Furthermore, we discuss the bottlenecks in toxinology studies covering PTM investigation. In conclusion, through the mining of PTMs in arthropod venoms, we observed a large gap in this field that limits our understanding on the biology of these venoms, affecting the diagnosis and therapeutics development. Hence, we encourage community efforts to draw attention to a better understanding of PTM in arthropod venom toxins.(AU)


Assuntos
Animais , Venenos de Artrópodes/toxicidade , Processamento de Proteína Pós-Traducional , Fosforilação , Escorpiões , Espectrometria de Massas/métodos , Aranhas , Vespas , Abelhas , Glicosilação
6.
J. venom. anim. toxins incl. trop. dis ; 27: e20210035, 2021. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1395711

Resumo

Background: Almost all Tityus characterized toxins are from subgenera Atreus and Tityus, there are only a few data about toxins produced by Archaeotityus, an ancient group in Tityus genus. Methods: Tityus (Archaeotityus) mattogrossensis crude venom was fractionated by high performance liquid chromatography, the major fractions were tested in a frog sciatic nerve single sucrose-gap technique. Two fractions (Tm1 and Tm2) were isolated, partially sequenced by MALDI-TOF/MS and electrophysiological assayed on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells. Results: The sucrose-gap technique showed neurotoxicity in four fractions. One fraction caused a delay of action potential repolarization and other three caused a reduction in amplitude. An electrophysiological assay showed that Tm1 is active on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells, and Tm2 on HEK293 Nav 1.3 and DRG cells, but not in HEK293 Nav 1.6. In addition, Tm1 and Tm2 did promote a shift to more negative potentials strongly suggesting that both are α-NaScTx. Conclusion: Although Tityus (Archaeotityus) mattogrossensis is considered an ancient group in Tityus genus, the primary structure of Tm1 and Tm2 is more related to Tityus subgenus. The patch clamp electrophysiological tests suggest that Tm1 and Tm2 are NaScTx, and also promoted no shift to more negative potentials, strongly suggesting that both are α-NaScTx. This paper aimed to explore and characterize for the first time toxins from the ancient scorpion Tityus (Archaeotityus) mattogrossensis.(AU)


Assuntos
Animais , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/classificação , Cromatografia Líquida/métodos , Sacarose/análise , Fenômenos Eletrofisiológicos/fisiologia
7.
J. venom. anim. toxins incl. trop. dis ; 27: e20200173, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1279403

Resumo

Background: Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods: In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results: Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinase-like fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families - such as Scorpionidae - and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion: Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.(AU)


Assuntos
Animais , Venenos de Escorpião , Sódio/análise , Biologia Computacional , Neurotoxinas
8.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200173, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31951

Resumo

Background: Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods: In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results: Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinase-like fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families - such as Scorpionidae - and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion: Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.(AU)


Assuntos
Animais , Venenos de Escorpião , Sódio/análise , Biologia Computacional , Neurotoxinas
9.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484776

Resumo

Abstract Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.

10.
J. venom. anim. toxins incl. trop. dis ; 27: e20210026, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1351023

Resumo

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.(AU)


Assuntos
Animais , Dor , Escorpiões , Venenos de Aranha , Modelos Animais , Canais Iônicos , Fosfolipídeos , Analgésicos
11.
J. venom. anim. toxins incl. trop. dis ; 27: e20200152, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346435

Resumo

Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.(AU)


Assuntos
Animais , Peptídeos , Venenos de Artrópodes , Artrópodes , Produtos Biológicos , Anti-Inflamatórios/análise , Citocinas , Literatura
12.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200152, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31847

Resumo

Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.(AU)


Assuntos
Animais , Peptídeos , Venenos de Artrópodes , Artrópodes , Produtos Biológicos , Anti-Inflamatórios/análise , Citocinas , Literatura
13.
J. venom. anim. toxins incl. trop. dis ; 26: e20200041, 2020. mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135139

Resumo

The aim of this contribution is to bring some precise information on the reasons why the number of noxious scorpion species is constantly growing. This fact is directly associated with the zoological research on the domains generally defined as systematics and taxonomy. The classification of any zoological group is in most cases a source of problem for most biologists not directly involved with this almost confidential aspect of the zoological research. Much information has been gathered and published over two centuries on the classification but it is remains poorly accessible and too technical for non-experts. The exposed example could be taken from several groups of scorpions possessing infamous species, but the choice went to the genus Leiurus Ehrenberg, 1828 distributed from North Africa to the Middle East. Maybe this contribution will help to explain why so numerous cases of species misidentification are regularly present in the general literature devoted to scorpion venoms and incidents.(AU)


Assuntos
Animais , Venenos de Escorpião , Escorpiões
14.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200128, 2020. graf
Artigo em Inglês | VETINDEX | ID: vti-32206

Resumo

As in previous contributions to the JVATiTD, the aim of this note is to bring some general information on a particular aspect of the scorpion biology. An attempt is made to explain the possible coevolution of telson morphology and venom glands, which took place during several hundred million years and in particular since scorpions migrated from aquatic to terrestrial environments. Three components can be directly associated with predation and defensive behaviours: (1) morphology of the chelae and structure of the chelae fingers granulations; (2) morphology of the metasoma and in particular of the telson; (3) evolution of tegumentary glands in the telson toward different types of venom glands. Since a number of recent contributions already treated some of these aspects, I will limit my comments to the possible evolution of the telson in relation to the evolution of venom glands. As in previous contributions, the content of this article is basically addressed to non-specialists on scorpions whose research embraces scorpions in several fields such as venom toxins and public health.(AU)


Assuntos
Animais , Venenos de Escorpião/análise , Venenos de Escorpião/biossíntese , Exoesqueleto/química , Coevolução Biológica
15.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e202000038, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32334

Resumo

The Amazon basin is one of the seven major geographical areas where scorpionism is recorded. In French Guiana, 90 stings per 100,000 inhabitants are registered per year. As the severity of cases is higher in children, descriptive studies are needed to have a better understanding of this pathology. The aim of the present study is to describe pediatric scorpionism in French Guiana. Methods: We conducted a monocentric descriptive retrospective study on scorpion stings in all pediatric patients admitted to Cayenne General Hospital from January 1, 2002 to December 31, 2018. Results: In this survey, 132 patients were included. Of them, 63% were male. Patients with general signs of envenomation were younger and lighter (p = 0.04). The picture was "one sting" (95.3%) by a "big" (47.6%), "black" (60%) and "small pincer" (58%) scorpion on the extremity of the body (84%). Stings occurred mainly during the day, while patients changed clothes. There was no envenomation during night. The monthly evaluation highlights that the number of stings and percentage of general signs of envenomation were closely connected to a composite variable including the variation of the level of rivers (p = 0.005). Cardiac symptoms were recorded in 82% of cases with general signs of envenomation. The presence of pulmonary; ear, nose, and throat (ENT); or gastrointestinal symptoms are related to major envenomation (p = 0.001, p = 0.01, and p = 0.02 respectively). Leukocytosis and glycemia increased according to the envenomation grade whereas serum potassium and alkaline reserve decreased. Forty-six patients needed hospitalization and seven of them required intensive care. No patient died nor presented sequelae at discharge from the hospital. Conclusion: Pediatric scorpionism in French Guiana is closely associated with child activities and climatic conditions. Severe envenomation presented most of the time with cardiac, pulmonary, and gastrointestinal symptoms.(AU)


Assuntos
Humanos , Criança , Picadas de Escorpião/diagnóstico , Picadas de Escorpião/epidemiologia , Cuidados Críticos , Unidades de Terapia Intensiva Pediátrica , Venenos de Escorpião , Escorpiões
16.
J. venom. anim. toxins incl. trop. dis ; 25: e148118, 2019. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1002497

Resumo

Scorpion venoms are natural sources of molecules that have, in addition to their toxic function, potential therapeutic applications. In this source the neurotoxins can be found especially those that act on potassium channels. Potassium channels are responsible for maintaining the membrane potential in the excitable cells, especially the voltage-dependent potassium channels (Kv), including Kv1.3 channels. These channels (Kv1.3) are expressed by various types of tissues and cells, being part of several physiological processes. However, the major studies of Kv1.3 are performed on T cells due its importance on autoimmune diseases. Scorpion toxins capable of acting on potassium channels (KTx), mainly on Kv1.3 channels, have gained a prominent role for their possible ability to control inflammatory autoimmune diseases. Some of these toxins have already left bench trials and are being evaluated in clinical trials, presenting great therapeutic potential. Thus, scorpion toxins are important natural molecules that should not be overlooked in the treatment of autoimmune and other diseases.(AU)


Assuntos
Animais , Venenos de Escorpião/toxicidade , Canais de Potássio , Terapia de Imunossupressão/métodos
17.
J. venom. anim. toxins incl. trop. dis ; 25: e148218, 2019. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1002496

Resumo

Tityus serrulatus venom (Ts venom) is a complex mixture of several compounds with biotechnological and therapeutical potentials, which highlights the importance of the identification and characterization of these components. Although a considerable number of studies have been dedicated to the characterization of this complex cocktail, there is still a limitation of knowledge concerning its venom composition. Most of Ts venom studies aim to isolate and characterize their neurotoxins, which are small, basic proteins and are eluted with high buffer concentrations on cation exchange chromatography. The first and largest fraction from carboxymethyl cellulose-52 (CMC-52) chromatography of Ts venom, named fraction I (Fr I), is a mixture of proteins of high and low molecular masses, which do not interact with the cation exchange resin, being therefore a probable source of components still unknown of this venom. Thus, the present study aimed to perform the proteome study of Fraction I from Ts venom, by high resolution mass spectrometry, and its biochemical characterization, by the determination of several enzymatic activities. Methods: Fraction I was obtained by a cation exchange chromatography using 50 mg of crude venom. This fraction was subjected to a biochemical characterization, including determination of L-amino acid oxidase, phospholipase, hyaluronidase, proteases activities and inhibition of angiotensin converting enzyme (ACE) activity. Fraction I was submitted to reduction, alkylation and digestion processes, and the tryptic digested peptides obtained were analyzed in a Q-Exactive Orbitrap mass spectrometer. Data analysis was performed by PEAKS 8.5 software against NCBI database. Results: Fraction I exhibits proteolytic activity and it was able to inhibit ACE activity. Its proteome analysis identified 8 different classes of venom components, among them: neurotoxins (48%), metalloproteinases (21%), hypotensive peptides (11%), cysteine-rich venom protein (9%), antimicrobial peptides (AMP), phospholipases and other enzymes (chymotrypsin and lysozymes) (3%) and phosphodiesterases (2%). Conclusions: The combination of a proteomic and biochemical characterization strategies leads us to identify new components in the T. serrulatus scorpion venom. The proteome of venom´s fraction can provide valuable direction in the obtainment of components in their native forms in order to perform a preliminary characterization and, consequently, to promote advances in biological discoveries in toxinology.(AU)


Assuntos
Animais , Venenos de Escorpião , Produtos Biológicos , Proteoma , Metaloproteases , Neurotoxinas , Fosfolipases , Enzimas
18.
Artigo em Inglês | VETINDEX | ID: vti-734601

Resumo

Background Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. Methods Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. Results The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. ..(AU)


Assuntos
Animais , Escorpiões , Venenos de Escorpião/análise , Eletrofisiologia , Impressões Digitais de DNA
19.
J. venom. anim. toxins incl. trop. dis ; 24: 1-8, 2018. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484752

Resumo

Background Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. Methods Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. Results The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. ..


Assuntos
Animais , Eletrofisiologia , Escorpiões , Impressões Digitais de DNA , Venenos de Escorpião/análise
20.
Artigo em Inglês | VETINDEX | ID: vti-18167

Resumo

In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus, T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis. Little information is available regarding the other Brazilian Tityus species.(AU)


Assuntos
Humanos , Animais , Sistema Nervoso Central , Venenos de Escorpião , Intoxicação/complicações , Escorpiões , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA