Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210094, 2022. graf, tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1395948

Resumo

Background: Endogenous phospholipases A2 (PLA2 ) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of ß-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The ß-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods: ß-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM médium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results: Proteomic analysis revealed fragments on ß-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. ß-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion: These findings indicate that ß-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.(AU)


Assuntos
Venenos de Serpentes/toxicidade , Bioquímica , Glioblastoma , Neurotoxinas
2.
J. venom. anim. toxins incl. trop. dis ; 28: e20210040, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1365074

Resumo

Background: Naja atra is a venomous snake species medically relevant in China. In the current study, we evaluated the composition and toxicological profile of venom collected from farm-raised N. atra. Methods: Venom was collected from third-generation captive bred N. atra on a snake farm in Hunan Province, China. The venom was analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and nano-liquid chromatography with electrospray ionization tandem mass spectrometry. In addition, hemolytic activity, median lethal dose, serum biochemical and histopathological parameters were accessed. Results: N. atra venom proteome was dominated by phospholipase A2 (46.5%) and three-finger toxins (41.4 %), and a set of common low relative abundance proteins, including cysteine-rich secretory proteins (4.7%), NGF-beta (2.4%), snake venom metalloproteinase (1.5%), glutathione peroxidase (0.6%), vespryn (0.3%), and 5ʹ-nucleotidases (0.2%) were also found. Furthermore, the venom exhibited direct hemolytic activity, neurotoxicity, myotoxicity, and high lethal potency in mice, with a subcutaneous median lethal dose of 1.02 mg/kg. Histopathological analysis and serum biochemical tests revealed that venom caused acute hepatic, pulmonary and renal injury in mice. Conclusion: This study revealed the composition and toxicity of venom collected from farm-raised N. atra, thereby providing a reference for the analysis of venom samples collected from captive-born venomous snakes in the future.(AU)


Assuntos
Animais , Venenos de Serpentes/toxicidade , Fosfolipases A2 , Naja naja , Miotoxicidade , Nucleotidases
3.
J. venom. anim. toxins incl. trop. dis ; 28: e20210110, 2022. graf
Artigo em Inglês | VETINDEX | ID: biblio-1395930

Resumo

Background: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTÐ¥-1 and CTÐ¥-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. Methods: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. Results: Both cardiotoxins at the concentration of 5 µg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. Conclusion: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.(AU)


Assuntos
Animais , Ratos , Proteínas Cardiotóxicas de Elapídeos/química , Venenos Elapídicos/toxicidade , Coração/fisiologia
4.
J. venom. anim. toxins incl. trop. dis ; 28: e20210103, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386129

Resumo

Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom's toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.(AU)


Assuntos
Trimeresurus/fisiologia , Proteoma/análise , Venenos de Crotalídeos/química , Indonésia
5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210111, 2022. graf, tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1395799

Resumo

Abstract Background: Eastern Russell's viper (Daboia siamensis) is one of the most medically significant snakes responsible for the development of acute renal failure. However, variation of the clinical picture and renal pathophysiology following bites by young and adult D. siamensis have not been elucidated. Methods: In this study, we analyzed the venomic profiles of D. siamensis at different maturation stages of juvenile, subadult and adult groups. The same pooled venom from each group was subjected to enzymatic, electrophoretic and proteomic analysis, including sublethal toxicity (0.1 mg/kg iv.) examined on bodily functions by comparing the venom compositional and functional profiles among venom specimens from juvenile, subadult and adult D. siamensis by correlating them with the renal pathophysiology in experimental rabbits. Results: The comparative studies revealed that juvenile venom possessed higher phospholipase A2 , metalloproteinase and serine proteinase levels, while subadult and adult venoms contained more L-amino acid oxidase, phosphodiesterase, the Kunitz-type serine protease inhibitor, disintegrin families and endothelial growth factor. An in vivo study revealed that the adult and subadult venoms caused persistent hypotension and bradycardia, while thrombocytopenia was a more characteristic effect of juvenile venom. All venom age groups showed significant reductions in renal hemodynamics and electrolyte excretions. The juvenile venom caused a higher tubulonephrosis lesion score than adult and subadult venoms. Conclusions: The D. siamensis venom shows an ontogenetic shift in its compositions and activities. Renal function alterations after envenomation depend on either the synergistic actions of different venom components or the disproportionate expression between the concentrations of enzymatic and non-enzymatic proteins in each age venom group. The high proportion of enzymatic toxin proteins in the juvenile venom results in greater nephrotoxicity.(AU)


Assuntos
Animais , Coelhos/fisiologia , Veias Renais/fisiopatologia , Venenos de Víboras/química
6.
J. venom. anim. toxins incl. trop. dis ; 27: e20200066, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154773

Resumo

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
7.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200066, 2021. graf
Artigo em Inglês | VETINDEX | ID: vti-31986

Resumo

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
8.
Semina Ci. agr. ; 42(1): 267-282, jan.-fev. 2021. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-31227

Resumo

Bacterial resistance is a sanitary issue explained by indiscriminate use of nonprescription drugs, and antimicrobial use in food production for growth promotion. Bothropstoxin-I (BthTx-I) is a phospholipase A2 (PLA2) from Bothrops jararacussu venom, which has a known antimicrobial effect. The goal of this study was the unprecedented evaluation of in vivo antimicrobial activity of BthTx-I in broilers. Microbiological, biochemical, and histological parameters were determined using 84 21-day old broilers that were kept in cages with four birds each at a density of 625 cm2/broiler. The experiment was randomized by three treatments with seven repetitions of four broilers each that lasted seven days. The treatments were: 1) bacitracin zinc diet; 2) PLA2-BthTx-I; 3) without additives. The data obtained from the studied variables was subjected to analysis of variance and an F-test at the 5% significance level. Averages of each variable in each treatment were compared by Tukey’s test. Broiler bacterial cloacal counts showed that BthTx-I decreased the microbial population without reducing body weight, intestinal morphology, or liver or kidney histopathological damage. The toxin showed in vivo activity, being an alternative for better performance in the production of broiler chickens, because it acted by decreasing the microbial load of potentially pathogenic bacteria in the intestinal(AU)


A resistência bacteriana é uma questão sanitária, explicada pelo uso indiscriminado de medicamentos sem receita médica e pelo uso de antimicrobianos na produção de alimentos para promover o crescimento. Bothropstoxin-I (BthTx-I) é uma fosfolipase A2 (PLA2) obtida do veneno da Bothrops jararacussu. A PLA2 do veneno de cobra tem efeito antimicrobiano conhecido. Objetivou-se com este estudo avaliar sem precedentes a atividade antimicrobiana in vivo de BthTx-I em frangos de corte. Os parâmetros microbiológicos, bioquímicos e histológicos foram realizados em 84 frangos de corte com 21 dias de idade mantidos em gaiolas com quatro animais cada e densidade de 625 cm2/frango. O experimento foi dividido em três tratamentos com sete repetições de quatro frangos cada um, com duração de sete dias. Os tratamentos foram: 1) dieta com bacitracina de zinco; 2) PLA2-BthTx-I; 3) sem aditivos. Os dados obtidos das variáveis estudadas foram submetidos à análise de variância e teste F ao nível de significância de 5%. As médias dos tratamentos em cada variável foram comparadas pelo teste de Tukey. A contagem cloacal bacteriana de frangos de corte mostrou que o BthTx-I diminuiu a população microbiana sem comprometer o peso corporal, a morfologia intestinal ou causar danos histopatológico no fígado e rins. Concluiu-se que a toxina apresentou atividade in vivo, sendo uma alternativa para um melhor desempenho na produção de frangos de corte, pois agiu diminuindo a carga microbiana de bactérias potencialmente patogênicas na microbiota intestinal das aves e não causou danos musculares, hepáticos ou renais na dosagem avaliada.(AU)


Assuntos
Animais , Galinhas/imunologia , Galinhas/microbiologia , Anti-Infecciosos/análise , Fosfolipases A2/administração & dosagem , Reações Bioquímicas , Venenos de Serpentes/análise , Venenos de Serpentes/química
9.
Semina ciênc. agrar ; 42(1): 267-282, jan.-fev. 2021. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1501920

Resumo

Bacterial resistance is a sanitary issue explained by indiscriminate use of nonprescription drugs, and antimicrobial use in food production for growth promotion. Bothropstoxin-I (BthTx-I) is a phospholipase A2 (PLA2) from Bothrops jararacussu venom, which has a known antimicrobial effect. The goal of this study was the unprecedented evaluation of in vivo antimicrobial activity of BthTx-I in broilers. Microbiological, biochemical, and histological parameters were determined using 84 21-day old broilers that were kept in cages with four birds each at a density of 625 cm2/broiler. The experiment was randomized by three treatments with seven repetitions of four broilers each that lasted seven days. The treatments were: 1) bacitracin zinc diet; 2) PLA2-BthTx-I; 3) without additives. The data obtained from the studied variables was subjected to analysis of variance and an F-test at the 5% significance level. Averages of each variable in each treatment were compared by Tukey’s test. Broiler bacterial cloacal counts showed that BthTx-I decreased the microbial population without reducing body weight, intestinal morphology, or liver or kidney histopathological damage. The toxin showed in vivo activity, being an alternative for better performance in the production of broiler chickens, because it acted by decreasing the microbial load of potentially pathogenic bacteria in the intestinal


A resistência bacteriana é uma questão sanitária, explicada pelo uso indiscriminado de medicamentos sem receita médica e pelo uso de antimicrobianos na produção de alimentos para promover o crescimento. Bothropstoxin-I (BthTx-I) é uma fosfolipase A2 (PLA2) obtida do veneno da Bothrops jararacussu. A PLA2 do veneno de cobra tem efeito antimicrobiano conhecido. Objetivou-se com este estudo avaliar sem precedentes a atividade antimicrobiana in vivo de BthTx-I em frangos de corte. Os parâmetros microbiológicos, bioquímicos e histológicos foram realizados em 84 frangos de corte com 21 dias de idade mantidos em gaiolas com quatro animais cada e densidade de 625 cm2/frango. O experimento foi dividido em três tratamentos com sete repetições de quatro frangos cada um, com duração de sete dias. Os tratamentos foram: 1) dieta com bacitracina de zinco; 2) PLA2-BthTx-I; 3) sem aditivos. Os dados obtidos das variáveis estudadas foram submetidos à análise de variância e teste F ao nível de significância de 5%. As médias dos tratamentos em cada variável foram comparadas pelo teste de Tukey. A contagem cloacal bacteriana de frangos de corte mostrou que o BthTx-I diminuiu a população microbiana sem comprometer o peso corporal, a morfologia intestinal ou causar danos histopatológico no fígado e rins. Concluiu-se que a toxina apresentou atividade in vivo, sendo uma alternativa para um melhor desempenho na produção de frangos de corte, pois agiu diminuindo a carga microbiana de bactérias potencialmente patogênicas na microbiota intestinal das aves e não causou danos musculares, hepáticos ou renais na dosagem avaliada.


Assuntos
Animais , Anti-Infecciosos/análise , /administração & dosagem , Galinhas/imunologia , Galinhas/microbiologia , Reações Bioquímicas , Venenos de Serpentes/análise , Venenos de Serpentes/química
10.
J. venom. anim. toxins incl. trop. dis ; 27: e20210024, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1340183

Resumo

The Malayan blue coral snake, Calliophis bivirgata flaviceps, is a medically important venomous snake in Southeast Asia. However, the complexity and diversity of its venom genes remain little explored. Methods: To address this, we applied high-throughput next-generation sequencing to profile the venom gland cDNA libraries of C. bivirgata flaviceps. The transcriptome was de novo assembled, followed by gene annotation, multiple sequence alignment and analyses of the transcripts. Results: A total of 74 non-redundant toxin-encoding genes from 16 protein families were identified, with 31 full-length toxin transcripts. Three-finger toxins (3FTx), primarily delta-neurotoxins and cardiotoxin-like/cytotoxin-like proteins, were the most diverse and abundantly expressed. The major 3FTx (Cb_FTX01 and Cb_FTX02) are highly similar to calliotoxin, a delta-neurotoxin previously reported in the venom of C. bivirgata. This study also revealed a conserved tyrosine residue at position 4 of the cardiotoxin-like/cytotoxin-like protein genes in the species. These variants, proposed as Y-type CTX-like proteins, are similar to the H-type CTX from cobras. The substitution is conservative though, preserving a less toxic form of elapid CTX-like protein, as indicated by the lack of venom cytotoxicity in previous laboratory and clinical findings. The ecological role of these toxins, however, remains unclear. The study also uncovered unique transcripts that belong to phospholipase A2 of Groups IA and IB, and snake venom metalloproteinases of PIII subclass, which show sequence variations from those of Asiatic elapids. Conclusion: The venom gland transcriptome of C. bivirgata flaviceps from Malaysia was de novo assembled and annotated. The diversity and expression profile of toxin genes provide insights into the biological and medical importance of the species.(AU)


Assuntos
Animais , Fosfolipases , Mordeduras de Serpentes , Venenos de Víboras/toxicidade , Expressão Gênica , Elapidae/fisiologia
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20210024, 2021. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-33362

Resumo

The Malayan blue coral snake, Calliophis bivirgata flaviceps, is a medically important venomous snake in Southeast Asia. However, the complexity and diversity of its venom genes remain little explored. Methods: To address this, we applied high-throughput next-generation sequencing to profile the venom gland cDNA libraries of C. bivirgata flaviceps. The transcriptome was de novo assembled, followed by gene annotation, multiple sequence alignment and analyses of the transcripts. Results: A total of 74 non-redundant toxin-encoding genes from 16 protein families were identified, with 31 full-length toxin transcripts. Three-finger toxins (3FTx), primarily delta-neurotoxins and cardiotoxin-like/cytotoxin-like proteins, were the most diverse and abundantly expressed. The major 3FTx (Cb_FTX01 and Cb_FTX02) are highly similar to calliotoxin, a delta-neurotoxin previously reported in the venom of C. bivirgata. This study also revealed a conserved tyrosine residue at position 4 of the cardiotoxin-like/cytotoxin-like protein genes in the species. These variants, proposed as Y-type CTX-like proteins, are similar to the H-type CTX from cobras. The substitution is conservative though, preserving a less toxic form of elapid CTX-like protein, as indicated by the lack of venom cytotoxicity in previous laboratory and clinical findings. The ecological role of these toxins, however, remains unclear. The study also uncovered unique transcripts that belong to phospholipase A2 of Groups IA and IB, and snake venom metalloproteinases of PIII subclass, which show sequence variations from those of Asiatic elapids. Conclusion: The venom gland transcriptome of C. bivirgata flaviceps from Malaysia was de novo assembled and annotated. The diversity and expression profile of toxin genes provide insights into the biological and medical importance of the species.(AU)


Assuntos
Animais , Fosfolipases , Mordeduras de Serpentes , Venenos de Víboras/toxicidade , Expressão Gênica , Elapidae/fisiologia
12.
J. venom. anim. toxins incl. trop. dis ; 27: e20210051, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1356458

Resumo

King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.(AU)


Assuntos
Animais , Intoxicação , Mordeduras de Serpentes , Serpentes , Antivenenos , Proteoma , Venenos Elapídicos , História Natural
13.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484779

Resumo

Abstract King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.

14.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484782

Resumo

Abstract Background Snake venoms are complex mixtures of toxic proteins or peptides encoded by various gene families that function synergistically to incapacitate prey. In the present study, in order to unravel the proteomic repertoire of Deinagkistrodon acutus venom, some trace abundance components were analyzed. Methods Shotgun proteomic approach combined with shotgun nano-LC-ESI-MS/MS were employed to characterize the medically important D. acutus venom, after collected samples were enriched with the combinatorial peptide ligand library (CPLL). Results This avenue helped us find some trace components, undetected before, in D. acutus venom. The results indicated that D. acutus venom comprised 84 distinct proteins from 10 toxin families and 12 other proteins. These results are more than twice the number of venom components obtained from previous studies, which were only 29 distinct proteins obtained through RP-HPLC for the venom of the same species. The present results indicated that in D. acutus venom, the most abundant components (66.9%) included metalloproteinases, serine proteinases, and C-type lectin proteins; the medium abundant components (13%) comprised phospholipases A2 (PLA2) and 5-nucleotidases and nucleases; whereas least abundant components (6%) were aminopeptidases, L-amino acid oxidases (LAAO), neurotoxins and disintegrins; and the trace components. The last were undetected before the use of conventional shotgun proteomics combined with shotgun nano-LC-ESI-MS/MS, such as cysteine-rich secretory proteins Da-CRPa, phospholipases B-like 1, phospholipases B (PLB), nerve growth factors (NGF), glutaminyl-peptide cyclortransferases (QC), and vascular non-inflammatory molecules 2 (VNN2). Conclusion These findings demonstrated that the CPLL enrichment method worked well in finding the trace toxin proteins in D. acutus venom, in contrast with the previous venomic characterization of D. acutus by conventional LC-MS/MS. In conclusion, this approach combined with the CPLL enrichment was effective for allowing us to explore the hidden D. acutus venomic profile and extended the list of potential venom toxins.

15.
J. venom. anim. toxins incl. trop. dis ; 27: e20200196, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346436

Resumo

Snake venoms are complex mixtures of toxic proteins or peptides encoded by various gene families that function synergistically to incapacitate prey. In the present study, in order to unravel the proteomic repertoire of Deinagkistrodon acutus venom, some trace abundance components were analyzed. Methods Shotgun proteomic approach combined with shotgun nano-LC-ESI-MS/MS were employed to characterize the medically important D. acutus venom, after collected samples were enriched with the combinatorial peptide ligand library (CPLL). Results This avenue helped us find some trace components, undetected before, in D. acutus venom. The results indicated that D. acutus venom comprised 84 distinct proteins from 10 toxin families and 12 other proteins. These results are more than twice the number of venom components obtained from previous studies, which were only 29 distinct proteins obtained through RP-HPLC for the venom of the same species. The present results indicated that in D. acutus venom, the most abundant components (66.9%) included metalloproteinases, serine proteinases, and C-type lectin proteins; the medium abundant components (13%) comprised phospholipases A2 (PLA2) and 5'-nucleotidases and nucleases; whereas least abundant components (6%) were aminopeptidases, L-amino acid oxidases (LAAO), neurotoxins and disintegrins; and the trace components. The last were undetected before the use of conventional shotgun proteomics combined with shotgun nano-LC-ESI-MS/MS, such as cysteine-rich secretory proteins Da-CRPa, phospholipases B-like 1, phospholipases B (PLB), nerve growth factors (NGF), glutaminyl-peptide cyclortransferases (QC), and vascular non-inflammatory molecules 2 (VNN2). Conclusion These findings demonstrated that the CPLL enrichment method worked well in finding the trace toxin proteins in D. acutus venom, in contrast with the previous venomic characterization of D. acutus by conventional LC-MS/MS. In conclusion, this approach combined with the CPLL enrichment was effective for allowing us to explore the hidden D. acutus venomic profile and extended the list of potential venom toxins.(AU)


Assuntos
Animais , Oxirredutases , Peptídeos , Venenos de Víboras , Proteoma , Neurotoxinas
16.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200196, 2021. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-31887

Resumo

Snake venoms are complex mixtures of toxic proteins or peptides encoded by various gene families that function synergistically to incapacitate prey. In the present study, in order to unravel the proteomic repertoire of Deinagkistrodon acutus venom, some trace abundance components were analyzed. Methods Shotgun proteomic approach combined with shotgun nano-LC-ESI-MS/MS were employed to characterize the medically important D. acutus venom, after collected samples were enriched with the combinatorial peptide ligand library (CPLL). Results This avenue helped us find some trace components, undetected before, in D. acutus venom. The results indicated that D. acutus venom comprised 84 distinct proteins from 10 toxin families and 12 other proteins. These results are more than twice the number of venom components obtained from previous studies, which were only 29 distinct proteins obtained through RP-HPLC for the venom of the same species. The present results indicated that in D. acutus venom, the most abundant components (66.9%) included metalloproteinases, serine proteinases, and C-type lectin proteins; the medium abundant components (13%) comprised phospholipases A2 (PLA2) and 5'-nucleotidases and nucleases; whereas least abundant components (6%) were aminopeptidases, L-amino acid oxidases (LAAO), neurotoxins and disintegrins; and the trace components. The last were undetected before the use of conventional shotgun proteomics combined with shotgun nano-LC-ESI-MS/MS, such as cysteine-rich secretory proteins Da-CRPa, phospholipases B-like 1, phospholipases B (PLB), nerve growth factors (NGF), glutaminyl-peptide cyclortransferases (QC), and vascular non-inflammatory molecules 2 (VNN2). Conclusion These findings demonstrated that the CPLL enrichment method worked well in finding the trace toxin proteins in D. acutus venom, in contrast with the previous venomic characterization of D. acutus by conventional LC-MS/MS. In conclusion, this approach combined with the CPLL enrichment was effective for allowing us to explore the hidden D. acutus venomic profile and extended the list of potential venom toxins.(AU)


Assuntos
Animais , Oxirredutases , Peptídeos , Venenos de Víboras , Proteoma , Neurotoxinas
17.
Acta sci., Biol. sci ; 43: e57016, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1461014

Resumo

The research and development of alternative treatments for snakebites (e.g., medicinal plants) is necessary due to the high costs of the existing ones. The effects of the aqueous extracts from Jacaranda decurrens leaves, roots, and xylopodium were analyzed upon the venom-induced (Bothrops spp. and Crotalus spp.) systemic and local toxicity. The extracts were able to partially inhibit the phospholipase activity of the venoms from Bothrops jararacussu and Crotalus durissus terrificus. The myotoxic, edema-inducing, coagulant, and hemorrhagic activities were also inhibited. The SDS-PAGE showed that the venom proteins were intact after their incubation with the extracts. This suggests that the possible mechanism of inhibition is not related to the degradation of the protein but rather to their binding to specific sites of the enzymes. The extracts significantly prolonged the survival time of animals in the lethality assay performed with Crotalus durissus terrificus venom and its toxin (crotoxin). The anti-ophidic activity of medicinal plants may aid in the management of snakebites in distant locations by reducing the victim’s local effects and time to heal.


Assuntos
Bignoniaceae/toxicidade , Plantas Medicinais/toxicidade , Técnicas In Vitro , Venenos de Crotalídeos
18.
Acta Sci. Biol. Sci. ; 43: e57016, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32536

Resumo

The research and development of alternative treatments for snakebites (e.g., medicinal plants) is necessary due to the high costs of the existing ones. The effects of the aqueous extracts from Jacaranda decurrens leaves, roots, and xylopodium were analyzed upon the venom-induced (Bothrops spp. and Crotalus spp.) systemic and local toxicity. The extracts were able to partially inhibit the phospholipase activity of the venoms from Bothrops jararacussu and Crotalus durissus terrificus. The myotoxic, edema-inducing, coagulant, and hemorrhagic activities were also inhibited. The SDS-PAGE showed that the venom proteins were intact after their incubation with the extracts. This suggests that the possible mechanism of inhibition is not related to the degradation of the protein but rather to their binding to specific sites of the enzymes. The extracts significantly prolonged the survival time of animals in the lethality assay performed with Crotalus durissus terrificus venom and its toxin (crotoxin). The anti-ophidic activity of medicinal plants may aid in the management of snakebites in distant locations by reducing the victims local effects and time to heal.(AU)


Assuntos
Técnicas In Vitro , Bignoniaceae/toxicidade , Plantas Medicinais/toxicidade , Venenos de Crotalídeos
19.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200007, 2020. graf
Artigo em Inglês | VETINDEX | ID: vti-32321

Resumo

Pathogenesis of Bothrops envenomations is complex and despite numerous studies on the effects of this snake venom on various biological systems, relatively little is known about such effects on the male reproductive system. In the present study, the toxicological outcomes of the low molecular weight fraction (LMWF) of B. jararaca snake venom - containing a range of bioactive peptides - were investigated on the dynamics and structure of the seminiferous epithelium and 15P-1 Sertoli cells viability. Methods: LMWF (5 µg/dose per testis) venom was administered in male Swiss mice by intratesticular (i.t.) injection. Seven days after this procedure, the testes were collected for morphological and morphometric evaluation, distribution of claudin-1 in the seminiferous epithelium by immunohistochemical analyses of testes, and the nitric oxide (NO) levels were evaluated in the total extract of the testis protein. In addition, the toxicological effects of LMWF and crude venom (CV) were analyzed on the 15P-1 Sertoli cell culture. Results: LMWF induced changes in the structure and function of the seminiferous epithelium without altering claudin-1 distribution. LMWF effects were characterized especially by lost cells in the adluminal compartment of epithelium (spermatocytes in pachytene, preleptotene spermatocytes, zygotene spermatocytes, and round spermatid) and different stages of the seminiferous epithelium cycle. LMWF also increased the NO levels in the total extract of the testis protein and was not cytotoxic in concentrations and time tested in the present study. However, CV showed cytotoxicity at 10 μg/mL from 6 to 48 h of treatment. Conclusions: The major finding of the present study was that the LMWF inhibited spermatozoa production; principally in the spermiogenesis stage without altering claudin-1 distribution in the basal compartment. Moreover, NO increased by LMWF induce open of complexes junctions and release the germ cells of the adluminal compartment to the seminiferous tubule.(AU)


Assuntos
Animais , Camundongos , Venenos de Serpentes/intoxicação , Venenos de Serpentes/toxicidade , Biossíntese Peptídica , Fenômenos Toxicológicos , Epitélio Seminífero , Camundongos
20.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190058, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32320

Resumo

Lack of complete genomic data of Bothrops jararaca impedes molecular biology research focusing on biotechnological applications of venom gland components. Identification of full-length coding regions of genes is crucial for the correct molecular cloning design. Methods: RNA was extracted from the venom gland of one adult female specimen of Bothrops jararaca. Deep sequencing of the mRNA library was performed using Illumina NextSeq 500 platform. De novo assembly of B. jararaca transcriptome was done using Trinity. Annotation was performed using Blast2GO. All predicted proteins after clustering step were blasted against non-redundant protein database of NCBI using BLASTP. Metabolic pathways present in the transcriptome were annotated using the KAAS-KEGG Automatic Annotation Server. Toxins were identified in the B. jararaca predicted proteome using BLASTP against all protein sequences obtained from Animal Toxin Annotation Project from Uniprot KB/Swiss-Pro database. Figures and data visualization were performed using ggplot2 package in R language environment. Results: We described the in-depth transcriptome analysis of B. jararaca venom gland, in which 76,765 de novo assembled isoforms, 96,044 transcribed genes and 41,196 unique proteins were identified. The most abundant transcript was the zinc metalloproteinase-disintegrin-like jararhagin. Moreover, we identified 78 distinct functional classes of proteins, including toxins, inhibitors and tumor suppressors. Other venom proteins identified were the hemolytic lethal factors stonustoxin and verrucotoxin. Conclusion: It is believed that the application of deep sequencing to the analysis of snake venom transcriptomes may represent invaluable insight on their biotechnological potential focusing on candidate molecules.(AU)


Assuntos
Animais , Venenos de Serpentes/análise , Venenos de Serpentes/biossíntese , Biotecnologia/métodos , Transcriptoma , Bothrops
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA