Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.949
Filtrar
1.
J Environ Sci (China) ; 149: 21-34, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181636

RESUMO

During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.


Assuntos
Halogenação , Pefloxacina , Poliestirenos , Cloreto de Polivinila , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cloreto de Polivinila/química , Poluentes Químicos da Água/química , Poliestirenos/química , Purificação da Água/métodos , Pefloxacina/química , Concentração de Íons de Hidrogênio
2.
J Environ Sci (China) ; 149: 254-267, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181640

RESUMO

As a new electrochemical technology, capacitive deionization (CDI) has been increasingly applied in environmental water treatment and seawater desalination. In this study, functional groups modified porous hollow carbon (HC) were synthesized as CDI electrode material for removing Na+ and Cl- in salty water. Results showed that the average diameter of HC was approximately 180 nm, and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups, respectively. The sulfonic acid functionalized HC (HC-S) showed better electrochemical and desalting performance than the amino-functionalized HC (HCN), with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl. Additionally, 92.63% capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S. The main findings prove that HC-S is viable as an electrode material for desalination by high-performance CDI applications.


Assuntos
Carbono , Eletrodos , Purificação da Água , Purificação da Água/métodos , Carbono/química , Porosidade , Adsorção , Água do Mar/química , Salinidade , Cloreto de Sódio/química
3.
J Environ Sci (China) ; 149: 79-87, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181680

RESUMO

Nano zero-valent iron (nZVI) is a promising phosphate adsorbent for advanced phosphate removal. However, the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance, accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate. In this study, we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites. As expected, the stronger anti-passivation ability of oxalate modified nZVI (OX-nZVI) strongly favored its phosphate adsorption. Interestingly, the oxalate modification endowed the surface Fe(III) sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites, by in situ forming a Fe(III)-phosphate-oxalate ternary complex, therefore enabling an advanced phosphate removal process. At an initial phosphate concentration of 1.00 mg P/L, pH of 6.0 and a dosage of 0.3 g/L of adsorbents, OX-nZVI exhibited faster phosphate removal rate (0.11 g/mg/min) and lower residual phosphate level (0.02 mg P/L) than nZVI (0.055 g/mg/min and 0.19 mg P/L). This study sheds light on the importance of site manipulation in the development of high-performance adsorbents, and offers a facile surface modification strategy to prepare superior iron-based materials for advanced phosphate removal.


Assuntos
Ferro , Oxalatos , Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Adsorção , Ferro/química , Poluentes Químicos da Água/química , Oxalatos/química , Purificação da Água/métodos , Modelos Químicos
4.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181682

RESUMO

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Assuntos
Biomassa , Nanotubos de Carbono , Nanotubos de Carbono/química , Vírus de Plantas/fisiologia , Purificação da Água/métodos , Tobamovirus , Peróxidos
5.
J Environ Sci (China) ; 148: 243-262, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095161

RESUMO

Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Bactérias , Desinfecção/métodos , Farmacorresistência Bacteriana/genética , Raios Ultravioleta , Purificação da Água/métodos
6.
J Environ Sci (China) ; 148: 263-273, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095162

RESUMO

The adsorption of pollutants can not only promote the direct surface reaction, but also modify the catalyst itself to improve its photoelectric characteristics, which is rarely studied for water treatment with inorganic photocatalyst. A highly crystalline BiOBr (c-BiOBr) was synthesized by a two-step preparation process. Owing to the calcination, the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr. The complex of organic pollutant and [Bi2O2]2+ could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes (h+). Moreover, the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons, which would coupling with the photoexcitation to promote generate more O2•-. The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants. This work strongly deepens the understanding of the molecular modification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Catálise , Bismuto/química , Purificação da Água/métodos
7.
J Environ Sci (China) ; 148: 399-408, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095175

RESUMO

A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.


Assuntos
Carbamazepina , Compostos Clorados , Óxidos , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Carbamazepina/química , Poluentes Químicos da Água/química , Compostos Clorados/química , Purificação da Água/métodos , Óxidos/química , Cinética , Hipoclorito de Sódio/química , Modelos Químicos
8.
J Environ Sci (China) ; 148: 409-419, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095176

RESUMO

Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment. The levels of most water quality parameters were generally comparable between SSW and FBW. During the pre-sedimentation of SSW, significant removal of turbidity, bacterial counts, and dissolved organic matter (DOM) was observed. The characterization of DOM components, molecular weight distributions, and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed. The characterization of particulates indicated that high surface energy, zeta potential, and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW, underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes. The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW ([turbidity]0 < 15 NTU). These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process, facilitating the development of SSW quality management and enhancing its reuse rate.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Material Particulado/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Substâncias Húmicas/análise , Qualidade da Água
9.
J Environ Sci (China) ; 148: 437-450, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095178

RESUMO

For environmental applications, it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer. Here, a novel Ag-bridged dual Z-scheme Ag/g-C3N4/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method, with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers, and unstable structure. These materials were characterized by XRD, FT-IR, SEM, TEM UV-Vis/DRS, and XPS to verify the structure and stability of the heterostructure. The pristine LDH, g-C3N4, and Ag/g-C3N4/CoNi-LDH composite were investigated as photocatalysts for water remediation, an environmentally motivated process. Specifically, the photocatalytic degradation of tetracycline was studied as a model reaction. The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon. The influence of several experimental parameters such as catalyst loading, pH, and tetracycline concentration were evaluated. The current study provides important data for water treatment and similar environmental protection applications.


Assuntos
Nanocompostos , Fotólise , Prata , Poluentes Químicos da Água , Purificação da Água , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Prata/química , Catálise , Nitrilas/química , Compostos de Nitrogênio/química , Adsorção , Grafite
10.
J Environ Sci (China) ; 148: 637-649, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095196

RESUMO

In this study, we investigated improving the performance of a layered double hydroxide (LDH) for the adsorption of As(III) and As(V) by controlling the morphology of LDH crystals. The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid (SA) as a morphological control agent. Doping the LDH crystals with carboxylate ions (RCOO-) derived from SA caused the crystals to develop in a radial direction. This changed the pore characteristics and increased the density of active surface sites. Subsequently, SA/MgFe-LDH showed excellent affinity for As(III) and As(V) with maximum sorption densities of 2.42 and 1.60 mmol/g, respectively. By comparison, the pristine MgFe-LDH had sorption capacities of 1.56 and 1.31 mmol/g for As(III) and As(V), respectively. The LDH was effective over a wide pH range for As(III) adsorption (pH 3-8.5) and As(V) adsorption (pH 3-6.5). Using a combination of spectroscopy and sorption modeling calculations, the main sorption mechanism of As(III) and As(V) on SA/MgFe-LDH was identified as inner-sphere complexation via ligand exchange with hydroxyl group (-OH) and RCOO-. Specifically, bidentate As-Fe complexes were proposed for both As(III) and As(V) uptake, with the magnitude of formation varying with the initial As concentration. Importantly, the As-laden adsorbent had satisfactory stability in simulated real landfill leachate. These findings demonstrate that SA/MgFe-LDH exhibits considerable potential for remediation of As-contaminated water.


Assuntos
Arsênio , Hidróxidos , Óxido de Magnésio , Ácido Succínico , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Ácido Succínico/química , Hidróxidos/química , Óxido de Magnésio/química , Purificação da Água/métodos , Modelos Químicos
11.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003032

RESUMO

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Assuntos
Carvão Vegetal , Dimetilnitrosamina , Tamanho da Partícula , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Dimetilnitrosamina/química , Cinética , Modelos Químicos
12.
J Environ Sci (China) ; 147: 451-461, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003061

RESUMO

Ketoprofen (KET), as a non-steroidal anti-inflammatory drug frequently detected in aqueous environments, is a threat to human health due to its accumulation and low biodegradability, which requires the transformation and degradation of KET in aqueous environments. In this paper, the reaction process of ozone-initiated KET degradation in water was investigated using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The detailed reaction path of KET ozonation is proposed. The thermodynamic results show that ozone-initiated KET degradation is feasible. Under ultraviolet irradiation, the reaction of ozone with water can also produce OH radicals (HO·) that can react with KET. The degradation reaction of KET caused by HO· was further studied. The kinetic calculation illustrates that the reaction rate (1.99 × 10-1 (mol/L)-1 sec-1) of KET ozonation is relatively slow, but the reaction rate of HO· reaction is relatively high, which can further improve the degradation efficiency. On this basis, the effects of pollutant concentration, ozone concentration, natural organic matter, and pH value on degradation efficiency under UV/O3 process were analyzed. The ozonolysis reaction of KET is not sensitive to pH and is basically unaffected. Finally, the toxicity prediction of oxidation compounds produced by degradation reaction indicates that most of the degradation products are harmless, and a few products containing benzene rings are still toxic and have to be concerned. This study serves as a theoretical basis for analyzing the migration and transformation process of anti-inflammatory compounds in the water environment.


Assuntos
Cetoprofeno , Ozônio , Poluentes Químicos da Água , Cetoprofeno/química , Ozônio/química , Poluentes Químicos da Água/química , Cinética , Anti-Inflamatórios não Esteroides/química , Modelos Químicos , Purificação da Água/métodos
13.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003084

RESUMO

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Assuntos
Cádmio , Compostos de Ferro , Compostos de Magnésio , Silicatos , Poluentes Químicos da Água , Cádmio/química , Poluentes Químicos da Água/química , Compostos de Magnésio/química , Silicatos/química , Compostos de Ferro/química , Adsorção , Modelos Químicos , Purificação da Água/métodos
14.
Water Environ Res ; 96(9): e11112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39245973

RESUMO

Root channel wetlands, as a new type of nature-imitating wetland system, provide a paradigm for micro-polluted water source purification; however, there is a knowledge gap on root channel wetlands' pollution removal effects and their main influencing factors after longtime operation. This study collected the turbidity, ammonia nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP), permanganate index (CODMn), dissolved oxygen (DO), and chemical oxygen demand (COD) at the inlet and outlet of Shijiuyang (SJY) wetland and Guanjinggang (GJG) wetland in Jiaxing City, China, from 2019 to 2021. The results showed that root channel wetlands had better water quality improvement effects. The SJY wetland had larger removal rates for DO, CODMn, and turbidity compared with the GJG wetland. In contrast, other water quality indexes have similar removal rates at both wetlands. The influencing factor analysis showed that water purification agent, flow, pH, and water temperature have large influences on the removal rates of pollutants for both wetlands. To address high turbidity and excessive DO, which are the primary pollutants affecting the two wetlands, implementing the diversion river before the pretreatment area and incorporating ecological floating beds in the deep purification area are recommended solutions to mitigate these issues. Compared with conventional general constructed wetlands, root channel wetlands are a more cost-effective and sustainable technology. The research is conducive to improving understanding of root channel wetland purification for micro-polluted water sources and enhancing water supply security capability in the plains water network area of the Yangtze River Delta region. PRACTITIONER POINTS: Compared with conventional general constructed wetlands, root channel wetlands are more cost-effective and sustainable technology. The SJY wetland demonstrated better removal rates for DO, CODMn, and turbidity, indicating a higher purification capacity compared to GJG wetland. Flow rate and pH are the primary factors influencing the GJG wetland, while the waterpurification agent and water temperature are the main factors affecting water quality in the SJY wetland.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Áreas Alagadas , China , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fósforo/química , Nitrogênio , Qualidade da Água , Análise da Demanda Biológica de Oxigênio
15.
Water Environ Res ; 96(9): e11122, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238287

RESUMO

Attapulgite (ATP) is a biocompatible clay mineral that efficiently absorbs water. It is widely used in water treatment due to its environmental friendliness and cost-effectiveness. This study aimed to develop a volume-expansion structure-based attapulgite flocculant (VES-ATP) using aluminum salt and attapulgite (ATP) under alkaline conditions, specifically for the treatment of water containing low levels of phosphorus. The VES-ATP was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The removal of phosphorus by the VES-ATP was conducted by varying the mass ratio of Al to attapulgite (denoted as RmAl/mATP), ATP dosage, and pH. The results showed that the VES-ATP had a good expansion and dispersibility in the presence of alkalized aluminum species. The basicity as the molar ratio of OH to Al (0.8 or 1.6) determined the expansion feasibility, and the coverage degree of Al onto ATP, as indicated by the mass ratio of Al to attapulgite (denoted as RmAl/mATP), determined Al flocculation efficiency. Higher values such as RmAl/mATP = 4:1 and 2:1 may result in a better flocculation. Low phosphorus treatment was successfully achieved through Al flocculation and ATP adsorption, including complexation, hydrogen bonding, and electrostatic attraction. As expected, the VES-ATP generated larger size flocs with a bigger fractal dimension than that with the sole Al flocculation. As a result, the total phosphorus could be reduced to the level below 5 µg/L. It is more efficient in the pH range of 5-9. Overall, the coupling of aluminum and attapulgite has significantly enhanced both purification capabilities of phosphorus. PRACTITIONER POINTS: Polymeric aluminum-modified attapulgite was efficient for removal of low phosphorus concentration. Phosphorus concentrations can be reduced to below 5 µg/L. Polymeric aluminum and attapulgite are both safe, and this technology is suitable for water treatment.


Assuntos
Alumínio , Compostos de Magnésio , Fósforo , Compostos de Silício , Poluentes Químicos da Água , Purificação da Água , Fósforo/química , Fósforo/isolamento & purificação , Compostos de Magnésio/química , Alumínio/química , Compostos de Silício/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Polímeros/química
16.
Environ Monit Assess ; 196(10): 874, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222246

RESUMO

The present study deals with the assessment of different physicochemical parameters (pH, electrical conductivity (E.C.), turbidity, total dissolved solids (TDS), and dissolved oxygen) in different surface water such as pond, river, and canal water in four different seasons, viz. March, June, September, and December 2023. The research endeavors to assess the impact of a cationic polyelectrolyte, specifically poly(diallyl dimethyl ammonium chloride) (PDADMAC), utilized as a coagulation aid in conjunction with lime for water treatment. Employing a conventional jar test apparatus, turbidity removal from diverse water samples is examined. Furthermore, the samples undergo characterization utilizing X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The study also conducts correlation analyses on various parameters such as electrical conductivity (EC), pH, total dissolved solids (TDS), turbidity of raw water, polyelectrolyte dosage, and percentage of turbidity removal across different water sources. Utilizing the Statistical Package for Social Science (SPSS) software, these analyses aim to establish robust relationships among initial turbidity, temperature, percentage of turbidity removal, dosage of coagulant aid, electrical conductivity, and total dissolved solids (TDS) in pond water, river water, and canal water. A strong positive correlation could be found between the percentage of turbidity removal and the value of initial turbidity of all surface water. However, a negative correlation could be observed between the polyelectrolyte dosage and raw water's turbidity. By elucidating these correlations, the study contributes to a deeper understanding of the effectiveness of PDADMAC and lime in water treatment processes across diverse environmental conditions. This research enhances our comprehension of surface water treatment methodologies and provides valuable insights for optimizing water treatment strategies to address the challenges posed by varying water sources and seasonal fluctuations.


Assuntos
Compostos de Cálcio , Óxidos , Compostos de Amônio Quaternário , Rios , Estações do Ano , Purificação da Água , Óxidos/química , Compostos de Cálcio/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/análise , Rios/química , Purificação da Água/métodos , Polietilenos/química , Poluentes Químicos da Água/análise , Lagoas/química , Monitoramento Ambiental/métodos
17.
Water Environ Res ; 96(9): e11118, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223779

RESUMO

Textile wastewater, laden with persistent dyes and non-biodegradable organics, poses a challenge for treatment in common effluent treatment plants (CETPs) using conventional methods. Pre-treatment of textile effluents is essential to ensure compatibility with CETPs. The present study employed three-dimensional (3D) aluminum and graphite electrodes for a sequential electro-coagulation and electro-Fenton (EC + EF) process. An experimental plan of 25 experiments was constructed using Taguchi method. The combination resulted in high removal efficiencies: 99.91% for color, 93.20% for chemical oxygen demand (COD), and 91.75% for total organic carbon (TOC) for the operating parameters; for EC, current density (J): 20 mA/cm2, time (t): 45 min, speed of rotation (N): 55 rpm; and for EF, current density (J): 25 mA/cm2, time (t): 50 min, iron concentration: 40 mg/L. Post-treatment, the wastewater exhibited an enhanced biodegradability index of 0.875, rendering it suitable for CETPs. There was an increase of 11% in the total energy consumption when energy spent during rotation and aeration at the time of EC and EF, respectively, were considered. This energy increases the cost and is not accounted for, in previous research. The energy consumption in kWh per g of COD removed at optimum condition for the hybrid treatment was 0.0314, which is lower than the energy consumption by other electrochemical processes employing plate electrodes. This indicates that 3D electrodes are more energy efficient than plate electrodes. PRACTITIONER POINTS: Hybrid electrochemical processes can be used as pre-treatment method for textile effluents. Three-dimensional electrodes improve removal rates with lower energy consumption. Significant color, COD, and TOC abatement were noted post-hybrid treatment of textile wastewater. Biodegradability of the textile effluent improves after the hybrid treatment.


Assuntos
Ferro , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Ferro/química , Indústria Têxtil , Resíduos Industriais , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Têxteis , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio
18.
Sci Rep ; 14(1): 21443, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271750

RESUMO

Selenium nanoparticles (SeNPs) are used in several sectors as antitumor, antimicrobial, and environmental adsorbents. Thus, the present research objective was the production of bacterial-SeNPs as an active and environmentally-friendly antibacterial and adsorbent agents and application into novel nanocomposite filter. From a total of 25 samples (soil, wastewater, and water) obtained from different locations in Egypt, 60 selenium-resistant bacterial isolates were obtained (on a mineral salt medium supplemented with selenium ions). After screening (based on the conversion of selenium from ionic form to nanoform), a superior bacterial isolate for SeNPs formation was obtained and molecular identified as Bacillus pumilus isolate OR431753. The high yield of SeNPs was noted after optimization (glucose as carbon source, pH 9 at 30 °C). The produced SeNPs were characterized as approximately 15 nm-diameter spherical nanoparticles, in addition to the presence of organic substances around these particles like polysaccharides and aromatic amines (protein residues). Also, they have antibacterial activity increased after formation of nanocomposite with nano-chitosan (SeNPs/NCh) against several pathogens. The antibacterial activity (expressed as a diameter of the inhibitory zone) averaged between 2.1 and 4.3, 2.7 and 4.8 cm for SeNPs and SeNPs/NCh, respectively compared with 1.1 to 1.8 cm for Amoxicillin. The produced nanoselenium/chitosan was used as a biofilter to remove mercury (Hg) and AgNPs as model chemicals with serious toxicity and potential pollutant for water bodies in many industries. The new SeNPs/NCh biofilter has proven highly effective in individually removing mercury and AgNPs from their synthetic wastewaters, with an efficiency of up to 99%. Moreover, the removal efficiency of AgNPs stabilized at 99% after treating them with the syringe filter-Se nanocomposite for 4 cycles of treatment (5 min each).


Assuntos
Biodegradação Ambiental , Mercúrio , Nanocompostos , Selênio , Prata , Águas Residuárias , Purificação da Água , Águas Residuárias/química , Nanocompostos/química , Selênio/química , Mercúrio/química , Mercúrio/isolamento & purificação , Purificação da Água/métodos , Prata/química , Poluentes Químicos da Água/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Desinfecção/métodos , Filtração/métodos , Bacillus/metabolismo , Bacillus/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia
19.
Sci Rep ; 14(1): 21507, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277680

RESUMO

The high water consumption in agriculture has led to an obvious water crisis in this sector, and the use of unconventional water sources, especially agricultural drains, is considered necessary. For this purpose, the present study was carried out to evaluate the efficiency of biological filters with different types of substrates for treating agricultural wastewater in Khuzestan province, located in the south of Iran, to use receptive resources and reuse them in agriculture. Next, the efficiency of four types of biological filters for treating agricultural drainage water with different retention times was evaluated. Sawdust, cotton stalks, wheat straw, stubble, and rice husk were used as filters. Qualitative factors included agricultural pesticides (Atrazine, Randup, Paraquat, and 2, 4-D) and nutrients (nitrate, nitrogen, phosphate, and phosphorus). By examining the trend of increasing the retention time and the corresponding removal percentage, it was observed that the retention time has a direct relationship with the amount of removal efficiency of nutrients and agricultural toxins. As the residence time increases, the average amount of nutrient compounds in different filters decreases, and their removal percentage increases. The highest removal percentage of nitrate, total nitrogen, phosphate, and total phosphorus was 74.03, 71.66, 57.97, and 61.85% in the sawdust filter and was assigned to 10 days. The highest percentage of removal of Atrazine, Tofudi, Paraquat, and Roundup toxins with a removal efficiency of 91.73, 84.27, 89.81, and 88.46% was also observed in the treatment of sawdust for 10 days. The sawdust filter showed a good performance in removing the parameters of agricultural toxins and nutrient compounds in a retention time of 10 days compared to other filters and retention times. As a general result, the sawdust filter can be cited as a reliable substrate with acceptable efficiency compared to other filters.


Assuntos
Agricultura , Filtração , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Agricultura/métodos , Praguicidas/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Filtração/métodos , Fósforo/análise , Fósforo/isolamento & purificação , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Águas Residuárias/química , Nutrientes/análise , Irã (Geográfico) , Nitratos/análise , Nitratos/isolamento & purificação , Fosfatos/análise , Fosfatos/isolamento & purificação
20.
Water Environ Res ; 96(9): e11124, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39285675

RESUMO

This research exploited biochar, sourced from Ginkgo leaves (GLs), to facilitate the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous environments. The results reveal that GL biochar, activated with ZnCl2 at a temperature of 500°C (500-ZGBC), demonstrated the greatest specific surface area (SBET) of 536.0 m2 g-1 for 2,4-D adsorption. The biochar's properties, including specific surface area, morphology, structure, thermal stability, and functional groups, were analyzed. Additionally, studies of kinetic and isotherm profiles were conducted, yielding the highest recorded adsorption capacity of 281.8 mg g-1. Pore filling, hydrogen bonding, π-π interactions, surface complexation with Zn groups, and electrostatic interactions contribute significantly to the adsorption performance of 500-ZGBC for 2,4-D. Optimal adsorption was determined to occur at pH 2.117, with a dose of 0.4230 g L-1 of 500-ZGBC, and an initial concentration of 2,4-D at 294.7 mg L-1, as evidenced by the application of the response surface method (RSM). PRACTITIONER POINTS: Premium pharmaceutical-grade biochar, derived from Ginkgo leaves, boasting a SBET of 536.0 m2 g-1 was produced. An absorption capacity reaching 281.8 mg g-1 was observed in Ginkgo leaf biochar for 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption. The adsorption procedure was refined through the employment of response surface methodology.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Carvão Vegetal , Ginkgo biloba , Herbicidas , Folhas de Planta , Poluentes Químicos da Água , Ginkgo biloba/química , Ácido 2,4-Diclorofenoxiacético/química , Adsorção , Carvão Vegetal/química , Herbicidas/química , Folhas de Planta/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Cinética , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA