Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Electron. j. biotechnol ; 39: 52-60, may. 2019. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1052027

RESUMO

BACKGROUND: Biologically active peptides produced from fish wastes are gaining attention because their health benefits. Proteases produced by halophilic microorganisms are considered as a source of active enzymes in high salt systems like fish residues. Hence, the aim of this study was the bioprospection of halophilic microorganisms for the production of proteases to prove their application for peptide production. RESULTS: Halophilic microorganisms were isolated from saline soils of Mexico and Bolivia. An enzymatic screening was carried out for the detection of lipases, esterases, pHB depolymerases, chitinases, and proteases. Most of the strains were able to produce lipases, esterases, and proteases, and larger hydrolysis halos were detected for protease activity. Halobacillus andaensis was selected to be studied for proteolytic activity production; the microorganism was able to grow on gelatin, yeast extract, skim milk, casein, peptone, fish muscle (Cyprinus carpio), and soy flour as protein sources, and among these sources, fish muscle protein was the best inducer of proteolytic activity, achieving a protease production of 571 U/mL. The extracellular protease was active at 50°C, pH 8, and 1.4 M NaCl and was inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of H. andaensis was used to hydrolyze fish muscle protein for peptide production. The peptides obtained showed a MW of 5.3 kDa and a radical scavenging ability of 10 to 30% on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and a ferric reducing ability of plasma. Conclusion: The use of noncommercial extracellular protease produced by H. andaensis for biologically active peptide production using fish muscle as the protein source presents a great opportunity for high-value peptide production.


Assuntos
Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Peixes/metabolismo , Halobacillus/enzimologia , Solo , Bactérias/isolamento & purificação , Bolívia , Esterases , Salinidade , Hidrólise , Lipase , México , Proteínas Musculares , Antioxidantes
2.
Braz. j. microbiol ; 44(4): 1299-1304, Oct.-Dec. 2013. ilus
Artigo em Inglês | LILACS | ID: lil-705290

RESUMO

Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.


Assuntos
Halobacillus/enzimologia , Serina Proteases/análise , Meios de Cultura/química , Estabilidade Enzimática , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Halobacillus/crescimento & desenvolvimento , Peso Molecular , Proteólise , Fluoreto de Fenilmetilsulfonil/metabolismo , Serina Proteases/química , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...