Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Rev. Assoc. Med. Bras. (1992) ; 63(10): 904-909, Oct. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-896298

RESUMO

Summary Objective: To investigate the changes in serum cardiac myosin light chain 1 (CMLC-1) levels in children with fulminant myocarditis (FM) during continuous blood purification (CBP), as well as to analyze its correlation with other laboratory indexes. Method: Twenty-four (24) children with FM who underwent CBP were enrolled. Before and during treatment (48 and 72 hours after treatment, or death), the optical density value of serum CMLC-1 was measured using enzyme-linked immunosorbent assay, and then the serum CMLC-1 concentration was calculated. The correlations between CMLC-1 OD value change and laboratory indexes including creatine kinase-MB (CK-MB), troponin, myohemoglobin and N-terminal pro-brain natriuretic peptide (NT-proBNP) were analyzed. Results: The serum CMLC-1 concentration significantly increased in the children with FM and decreased obviously during CBP therapy. In the same period, the change of CMLC-1 concentration were positively correlated with creatine kinase-MB (r=0.528), troponin (r=0.726), myohemoglobin (r=0.702), and NT-proBNP levels (r=0.589). Conclusion: The serum CMLC-1 concentration increases significantly in children with FM, but CBP therapy can effectively control this increase.


Assuntos
Humanos , Criança , Hemofiltração/métodos , Cadeias Leves de Miosina/sangue , Miocardite/sangue , Miocardite/terapia , Fragmentos de Peptídeos/sangue , Valores de Referência , Fatores de Tempo , Troponina/sangue , Ensaio de Imunoadsorção Enzimática , Biomarcadores/sangue , Estatísticas não Paramétricas , Peptídeo Natriurético Encefálico/sangue , Creatina Quinase Forma MB/sangue , Mioglobina/sangue
2.
Braz. j. med. biol. res ; 47(10): 826-833, 10/2014. graf
Artigo em Inglês | LILACS | ID: lil-722174

RESUMO

O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.


Assuntos
Animais , Masculino , Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Vasoconstrição/fisiologia , Aorta Torácica , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Acilação/efeitos dos fármacos , Acilação/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Azepinas/farmacologia , Western Blotting , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oxazóis/farmacologia , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Fenilefrina/agonistas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos Wistar , Ribonucleotídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores
3.
Braz. j. med. biol. res ; 46(7): 574-579, ago. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-682398

RESUMO

Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.


Assuntos
Animais , Masculino , Cálcio/metabolismo , Linfa/fisiologia , Artéria Mesentérica Superior/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Quinase de Cadeia Leve de Miosina/fisiologia , Choque Hemorrágico/fisiopatologia , Contração Muscular , Artéria Mesentérica Superior/metabolismo , Músculo Liso Vascular/metabolismo , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/análise , Distribuição Aleatória , Ratos Wistar , Choque Hemorrágico/enzimologia
4.
Biol. Res ; 42(1): 121-132, 2009. ilus
Artigo em Inglês | LILACS | ID: lil-519091

RESUMO

Skeletal muscles have the potential to regenerate by activation of quiescent satellite cells, however, the molecular signature that governs satellite cells during muscle regeneration is not well defined. Myosin light chains (Myls) are sarcomere-related proteins as traditional regulator of muscle contraction. In this report, we studied the possible role of Myl in the proliferation of skeletal muscle-derived myoblasts. Compared to diaphragm-derived myoblasts, the extraocular muscle-derived myoblasts with lower levels of Myl proliferated faster, maintained a longer proliferation phase, and formed more final myotubes. It was found that blockading Myl with anti-Myl antibody or knockdown of Myll by siRNA targeted against Myll could enhance the myoblast proliferation and delay the differentiation of myoblasts. Our results suggested that Myl, likely Myll, can negatively affect myoblast proliferation by facilitating myoblast withdrawal from cell cycle and differentiation.


Assuntos
Animais , Camundongos , Proliferação de Células , Diafragma/citologia , Mioblastos/fisiologia , Cadeias Leves de Miosina/fisiologia , Músculos Oculomotores/citologia , Regeneração/fisiologia , Western Blotting , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Biol. Res ; 34(1): 1-6, 2001. ilus
Artigo em Inglês | LILACS | ID: lil-288327

RESUMO

Recent gene knock-out studies in mice have suggested that ventricular myosin light chain-2 (vMLC2) has a role in the regulation of cardiogenic development and that perturbation in expression of vMLC2 is linked to the onset of dilated cardiomyopathy. In an attempt to develop an avian model for such studies, we examined the expression pattern of vMLC2 in chicken embryos at various stages and analyzed the effect of antisense oligonucleotide-mediated interference of vMLC2 function in cultures of whole embryos. Our results showed vMLC2 to be a specific marker for ventricular chamber throughout chicken embryonic development and antisense vMLC2 treatment of primitive streak stage (stage 4) embryos to produce pronounced dilation of heart tube with severe deficiency in formation of striated myofibrils. Further studies with antisense mRNA techniques of whole embryo cultures should, therefore, be useful to evaluate the role of vMLC2 and other putative regulatory factors in cardiac myofibrillogenesis.


Assuntos
Animais , Embrião de Galinha , Expressão Gênica , Coração/embriologia , Cadeias Leves de Miosina/genética , Cardiomiopatia Dilatada/etiologia , Embrião de Galinha/ultraestrutura , Cardiopatias Congênitas/etiologia , Ventrículos do Coração , Hibridização In Situ/métodos , Cadeias Leves de Miosina/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Mensageiro/isolamento & purificação
6.
Braz. j. med. biol. res ; 33(5): 499-508, May 2000. graf
Artigo em Inglês | LILACS | ID: lil-260243

RESUMO

Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+ -dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+ -related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.


Assuntos
Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Cálcio/metabolismo , Músculo Esquelético/citologia , Cadeias Leves de Miosina/fisiologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...