Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 54(9): e11062, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249335

RESUMO

Dendritic cells (DCs) play a crucial role as central orchestrators of immune system response in atherosclerosis initiation and progression. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in the immune maturation of DCs, but the underlying mechanisms remain unclear. We isolated mouse bone marrow progenitors and stimulated them with granulocyte-macrophage colony-stimulating factor and interleukin (IL)-4 to induce immature DCs. We then treated DCs with oxidized low-density lipoprotein (oxLDL) to induce maturation. LOX-1 siRNA was used to investigate the modulation of LOX-1 on the development of DCs and the underlying signal pathways. CD11c-positive DCs were successfully derived from mouse bone marrow progenitors. OxLDL promoted the expressions of DCs maturation markers and pro-inflammatory cytokines. OxLDL also upregulated LOX-1 expression and activated MAPK/NF-κB pathways. LOX-1 siRNA could attenuate the expression of MAPK/NF-κB pathways and inflammatory cytokines. In conclusion, oxLDL induced the maturation of DCs via LOX-1-mediated MAPK/NF-κB pathway, which contributed to the initiation and progression of atherosclerosis.


Assuntos
Animais , Ratos , Células Dendríticas , NF-kappa B , Sistema de Sinalização das MAP Quinases , Receptores Depuradores Classe E , Lipoproteínas LDL
2.
Braz. j. med. biol. res ; 46(9): 765-770, 19/set. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-686568

RESUMO

Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression.


Assuntos
Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , /metabolismo , Receptores Depuradores Classe E/metabolismo , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Ciclo Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Immunoblotting , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/fisiologia , /genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Vasculite/fisiopatologia , Vasculite/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...