Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.056
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612896

RESUMO

Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by cartilage erosion, structural changes, and inflammation. Synovial fibroblasts play a crucial role in OA pathophysiology, with abnormal fibroblastic cells contributing significantly to joint pathology. Fibrocytes, expressing markers of both hematopoietic and stromal cells, are implicated in inflammation and fibrosis, yet their marker and role in OA remain unclear. ENTPD1, an ectonucleotidase involved in purinergic signaling and expressed in specific fibroblasts in fibrotic conditions, led us to speculate that ENTPD1 plays a role in OA pathology by being expressed in fibrocytes. This study aimed to investigate the phenotype of ENTPD1+CD55+ and ENTPD1-CD55+ synovial fibroblasts in OA patients. Proteomic analysis revealed a distinct molecular profile in ENTPD1+CD55+ cells, including the upregulation of fibrocyte markers and extracellular matrix-related proteins. Pathway analysis suggested shared mechanisms between OA and rheumatoid arthritis. Correlation analysis revealed an association between ENTPD1+CD55+ fibrocytes and resting pain in OA. These findings highlight the potential involvement of ENTPD1 in OA pain and suggest avenues for targeted therapeutic strategies. Further research is needed to elucidate the underlying molecular mechanisms and validate potential therapeutic targets.


Assuntos
Fibroblastos , Proteômica , Humanos , Membrana Sinovial , Antígenos CD55 , Proteínas da Matriz Extracelular , Inflamação , Dor
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621928

RESUMO

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Membrana Sinovial , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica/métodos
3.
Mol Med ; 30(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594612

RESUMO

BACKGROUND: Immune-mediated arthritis is a group of autoinflammatory diseases, where the patient's own immune system attacks and destroys synovial joints. Sustained remission is not always achieved with available immunosuppressive treatments, warranting more detailed studies of T cell responses that perpetuate synovial inflammation in treatment-refractory patients. METHODS: In this study, we investigated CD4 + and CD8 + T lymphocytes from the synovial tissue and peripheral blood of patients with treatment-resistant immune-mediated arthritis using paired single-cell RNA and TCR-sequencing. To gain insights into the trafficking of clonal families, we compared the phenotypes of clones with the exact same TCRß amino acid sequence between the two tissues. RESULTS: Our results show that both CD4 + and CD8 + T cells display a more activated and inflamed phenotype in the synovial tissue compared to peripheral blood both at the population level and within individual T cell families. Furthermore, we found that both cell subtypes exhibited clonal expansion in the synovial tissue. CONCLUSIONS: Our findings suggest that the local environment in the synovium drives the proliferation of activated cytotoxic T cells, and both CD4 + and CD8 + T cells may contribute to tissue destruction and disease pathogenesis.


Assuntos
Artrite , Linfócitos T CD8-Positivos , Humanos , Linfócitos T CD8-Positivos/metabolismo , Artrite/metabolismo , Artrite/patologia , Membrana Sinovial , Células Clonais , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo
4.
Sci Transl Med ; 16(742): eadk3506, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598614

RESUMO

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+ pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA.


Assuntos
Artrite Reumatoide , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Fibroblastos/patologia , Dor/metabolismo , Expressão Gênica , Células Cultivadas
5.
J Nanobiotechnology ; 22(1): 188, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632657

RESUMO

Rheumatoid arthritis (RA) is a progressive autoimmune disease accompanied by joint swelling, cartilage erosion and bone damage. Drug therapy for RA has been restricted due to poor therapeutic effect, recurrence and adverse effects. Macrophages and synovial fibroblasts both play important roles in the pathology of RA. Macrophages secrete large amount of pro-inflammatory cytokines, while synovial fibroblasts are tightly correlated with hypoxia synovium microenvironment, cytokine release, recruitment of pro-inflammatory cells, bone and cartilage erosion. Therefore, in this timely research, an injectable and pH-sensitive peptide hydrogel loading methotrexate (MTX) and bismuthene nanosheet/polyethyleneimine (BiNS/PEI) has been developed to reduce the activity of macrophages and eliminate over-proliferated synovial fibroblasts simultaneously. MTX can reduce the cytokine secretion of macrophages/anti-apoptosis property of synovial fibroblasts and BiNS/PEI can eliminate synovial fibroblasts via photodynamic therapy (PDT) and photothermal therapy (PTT) routes. The hydrogel was injected into the acidic inflammatory synovium for precise targeting and served as a drug reservoir for pH responsive and sustained drug release, while improving the bioavailability and reducing the toxicity of MTX. Excellent therapeutic efficacy has been achieved in both in vivo and in vitro studies, and this unique drug delivery system provides a new and robust strategy to eliminate synovial fibroblasts and modulate immune system for RA treatment in clinical.


Assuntos
Artrite Reumatoide , Hidrogéis , Humanos , Hidrogéis/farmacologia , Membrana Sinovial/patologia , Macrófagos , Metotrexato/farmacologia , Citocinas , Fibroblastos
6.
Eur Rev Med Pharmacol Sci ; 28(7): 2670-2676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639506

RESUMO

BACKGROUND: Synovial chondromatosis is a non-malignant synovial disorder characterized by the presence of cartilage formation within the synovial membrane, leading to the emergence of multiple cartilaginous nodules that may be either attached or unattached. The presence of this anatomical feature is frequently observed in articulations such as the knee, hip, elbow, and ankle. CASE REPORT: In this study, we present a case of synovial chondromatosis in the knee joint of a healthy male in his early 60s. Notably, the patient exhibited the simultaneous presence of 87 large loose bodies. The occurrence of a substantial quantity of unattached entities of notable dimensions within the joint is highly uncommon. CONCLUSIONS: The patient had several synovial chondromas, a rare disease. Synovial chondromatosis is a benign disorder; however, growing synovium can cause pyogenic cartilage nodules. Most loose bodies in joints can abrade and degenerate articular cartilage, causing long-term discomfort. Thus, an early-stage procedure to remove loose bodies and carefully excise synovial tissue is necessary to treat this condition.


Assuntos
Cartilagem Articular , Condromatose Sinovial , Humanos , Masculino , Condromatose Sinovial/diagnóstico por imagem , Condromatose Sinovial/cirurgia , Condromatose Sinovial/patologia , Membrana Sinovial/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Cartilagem Articular/patologia , Articulação do Tornozelo
7.
Autoimmunity ; 57(1): 2201412, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38425093

RESUMO

OBJECTIVE: To explore the effect of CD5-like molecule (CD5L) on rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) and the relative molecular mechanism of CD5L in it. METHODS: Recombinant protein CD5L was used to stimulate the cultured RA-FLS cells. The inflammation-related cytokines were determined by real time-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The signal molecules and apoptosis-related molecules were detected by western blot assay (WB), and cell counting kit-8 (CCK-8) was used to detect the proliferation. RESULTS: CD5L can increase the production of IL-6, IL-8, and TNF-α and this effect can be inhibited by signal pathway inhibitor. At the same time, CD5L activated ERK1/2 MAPK signal, inhibitor treatment can weaken the intensity of phosphorylation. In addition, CD5L can enhance the proliferation ability of RA-FLS. CONCLUSION: CD5L induces the production of inflammatory cytokines in RA-FLS through the ERK1/2 MAPK pathway and increases cell survival.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Humanos , Membrana Sinovial/metabolismo , Sistema de Sinalização das MAP Quinases , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Proliferação de Células , Proteínas Reguladoras de Apoptose , Receptores Depuradores/metabolismo
8.
Adv Rheumatol ; 64(1): 24, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553767

RESUMO

BACKGROUND: Osteoarthritis (OA) affects the entire joint, causing structural changes in articular cartilage, subchondral bone, ligaments, capsule, synovial membrane, and periarticular muscles that afflicts millions of people globally, leading to persistent pain and diminished quality of life. The intra-articular use of platelet-rich plasma (PRP) is gaining recognition as a secure therapeutic approach due to its potential regenerative capabilities. However, there is controversial clinical data regarding efficacy of PRP for OA treatment. In this context, gathering scientific evidence on the effects of PRP in treating OA in animal models could provide valuable insights into understanding its impact on aspects like cartilage health, synovial tissue integrity, and the inflammatory process in affected joints. Thus, the objective of this study was to assess the effects of PRP injections on inflammation and histopathological aspects of cartilage and synovium in animal models of OA through a comprehensive systematic review with meta-analysis. METHODS: A electronic search was conducted on Medline, Embase, Web of Science, The Cochrane Library, LILACS, and SciELO databases for relevant articles published until June 2022. A random-effects meta-analysis was employed to synthesize evidence on the histological characteristics of cartilage and synovium, as well as the inflammatory process. The GRADE approach was utilized to categorize the quality of evidence, and methodological quality was assessed using SYRCLE's RoB tool. RESULTS: Twenty-one studies were included in the review, with twelve of them incorporated into the meta-analysis. PRP treatment demonstrated superior outcomes compared to the control group in terms of cartilage histology (very low quality; p = 0.0002), synovium histology (very low quality; p < 0.0001), and reductions in proinflammatory markers, including IL-1 (low quality; p = 0.002), IL-6 (very low quality; p < 0.00001), and TNF-α (very low; p < 0.00001). However, PRP treatment did not yield a significant impact on PDGF-A levels (very low quality; p = 0.81). CONCLUSION: PRP appears capable of reducing proinflammatory markers (IL-1, IL-6, TNF-α) and mitigating cartilage and synovium damage in animals with OA. However, the levels of evidence of these findings are low to very low. Therefore, more rigorous studies with larger samples are needed to improve the quality of evidence. PROSPERO REGISTRATION: CRD42022250314.


Assuntos
Cartilagem Articular , Osteoartrite , Plasma Rico em Plaquetas , Animais , Humanos , Fator de Necrose Tumoral alfa , Interleucina-6 , Qualidade de Vida , Osteoartrite/terapia , Membrana Sinovial , Injeções Intra-Articulares , Cartilagem Articular/patologia , Interleucina-1
9.
Int J Biol Sci ; 20(5): 1617-1633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481810

RESUMO

In rheumatoid arthritis (RA), a debilitating autoimmune disorder marked by chronic synovial inflammation and progressive cartilage degradation, fibroblast-like synoviocytes (FLS) are key pathogenic players. Current treatments targeting these cells are limited. Our study focused on the Fat Mass and Obesity-associated protein (FTO), known for its roles in cell proliferation and inflammatory response modulation, and its involvement in RA. We specifically examined the inflammatory regulatory roles of FTO and CMPK2, a mitochondrial DNA synthesis protein, in FLS. Utilizing a combination of in vitro and in vivo methods, including FTO inhibition and gene knockdown, we aimed to understand FTO's influence on RA progression and chondrocyte functionality. Our findings showed that increased FTO expression in RA synovial cells enhanced their proliferation and migration and decreased senescence and apoptosis. Inhibiting FTO significantly slowed the disease progression in our models. Our research also highlighted that the FTO-CMPK2 pathway plays a crucial role in regulating synovial inflammation through the mtDNA-mediated cGAS/STING pathway, affecting chondrocyte homeostasis. This study indicates that targeting the FTO-CMPK2 axis could be a promising new therapeutic strategy for managing RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Proliferação de Células/genética , Homeostase/genética , Fibroblastos/metabolismo , Cartilagem/metabolismo , Células Cultivadas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
10.
Genome Biol ; 25(1): 68, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468286

RESUMO

BACKGROUND: In rheumatoid arthritis (RA), the activation of T and B cell clones specific for self-antigens leads to the chronic inflammation of the synovium. Here, we perform an in-depth quantitative analysis of the seven chains that comprise the adaptive immune receptor repertoire (AIRR) in RA. RESULTS: In comparison to controls, we show that RA patients have multiple and strong differences in the B cell receptor repertoire including reduced diversity as well as altered isotype, chain, and segment frequencies. We demonstrate that therapeutic tumor necrosis factor inhibition partially restores this alteration but find a profound difference in the underlying biochemical reactivities between responders and non-responders. Combining the AIRR with HLA typing, we identify the specific T cell receptor repertoire associated with disease risk variants. Integrating these features, we further develop a molecular classifier that shows the utility of the AIRR as a diagnostic tool. CONCLUSIONS: Simultaneous sequencing of the seven chains of the human AIRR reveals novel features associated with the disease and clinically relevant phenotypes, including response to therapy. These findings show the unique potential of AIRR to address precision medicine in immune-related diseases.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Membrana Sinovial , Linfócitos B , Fator de Necrose Tumoral alfa , Fenótipo
11.
Front Immunol ; 15: 1250884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482018

RESUMO

Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.


Assuntos
Artrite Reumatoide , Sinoviócitos , Sinovite , Humanos , Sinoviócitos/metabolismo , Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Sinovite/metabolismo , Fibroblastos/metabolismo
12.
Nat Commun ; 15(1): 2398, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493215

RESUMO

The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment.


Assuntos
Artrite Reumatoide , Receptores Proteína Tirosina Quinases , Humanos , Receptor Tirosina Quinase Axl , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Membrana Sinovial/metabolismo
13.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509602

RESUMO

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Assuntos
Osteoartrite do Joelho , Fator de Transcrição STAT6 , Animais , Ratos , Fibrose , Inflamação/patologia , Ativação de Macrófagos , Osteoartrite do Joelho/patologia , Dor/patologia , Membrana Sinovial/patologia , Fator de Transcrição STAT6/metabolismo
14.
PLoS One ; 19(3): e0300046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451901

RESUMO

Symptoms in people with carpal tunnel syndrome (CTS) are traditionally attributed to neural tissue, but recent studies suggest that the subsynovial connective tissue (SSCT) may also play a role in CTS. The SSCT undergoes fibrotic thickening which is generally described as "non-inflammatory" based on basic histology. This study uses immunohistochemistry to determine the presence of macrophages and T-cells within SSCT and their relationship with symptoms in people with CTS. SSCT was collected from twenty people with CTS and eight controls undergoing wrist fracture surgery. Immunohistochemical quantification of CD3+ T-cells and CD68+ macrophage densities as well as CD4+/CD8+ T-cell subpopulations were compared between groups using independent t-tests. Spearman correlations were used to identify associations between immune cell densities and CTS symptom scores. The density of CD3+ T-cells was significantly higher in SSCT of people with CTS compared to controls (CTS mean 26.7 (SD 13.7); controls 6.78 (6.3), p = 0.0005) while the density of CD68+ macrophages was lower (CTS mean 9.5 (SD 6.0); controls 17.7 (8.2), p = 0.0058). Neither CD68+ nor CD3+ cell densities correlated with symptom scores. In contrast to previous assumptions, our data show that the SSCT in the carpal tunnel in both people with CTS and controls is not devoid of immune cells. Whereas the higher density of CD68+ macrophages in control participants may be associated with their early recruitment after acute fracture, CD3+ cells within the SSCT may play a role in chronic CTS.


Assuntos
Síndrome do Túnel Carpal , Traumatismos do Punho , Humanos , Síndrome do Túnel Carpal/cirurgia , Membrana Sinovial , Tecido Conjuntivo , Punho
16.
Int Immunopharmacol ; 131: 111809, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38484666

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that is characterized by persistent morning stiffness, joint pain, and swelling. However, there is a lack of reliable diagnostic markers and therapeutic targets that are both effective and trustworthy. METHODS: In this study, gene expression profiles (GSE89408, GSE55235, GSE55457, and GSE77298) were obtained from the Gene Expression Omnibus database. Differentially expressed necroptosis-related genes were attained from intersection of necroptosis-related gene set, differentially expressed genes, and weighted gene co-expression network analysis. The LASSO, random forest, and SVM-RFE machine learning algorithms were utilized to further screen potential diagnostic genes for RA. Immune cell infiltration was analyzed using the CIBERSORT method. The expressions of diagnostic genes were validated through quantitative real-time PCR, western blotting, immunohistochemistry, and immunofluorescence staining in synovial tissues collected from three trauma controls and three RA patients. RESULTS: Five core necroptosis-related genes (FAS, CYBB, TNFSF10, EIF2AK2, and BIRC2) were identified as potential biomarkers for RA. Two different necroptosis patterns based on these five genes were confirmed to significantly correlated with immune cells (especially macrophages). In vitro experiments showed significantly higher mRNA and protein expression levels of CYBB and EIF2AK2 in RA patients compared to normal controls, consistent with the bioinformatics analysis results. CONCLUSION: Our study identified a novel necroptosis-related subtype and five diagnostic biomarkers of RA, revealed vital roles in the development and occurrence of RA, and offered potential targets for clinical diagnosis and immunotherapy.


Assuntos
Artrite Reumatoide , Necroptose , Humanos , Necroptose/genética , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Membrana Sinovial , Algoritmos , Biologia Computacional , Biomarcadores
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432455

RESUMO

The dysregulation of N6-methyladenosine (m6A) on mRNAs is involved in the pathogenesis of rheumatoid arthritis (RA). Methyltransferase-like 3 (METTL3), serving as a central m6A methyltransferase, is highly expressed in macrophages, synovial tissues and RA fibroblast-like synoviocytes (RA-FLS) of RA patients. However, METTL3-mediated m6A modification on target mRNAs and the molecular mechanisms involved in RA-FLS remain poorly defined. Our research demonstrated that METTL3 knockdown decreased the proliferation, migratory and invasive abilities of RA-FLS. Notably, we identified the adhesion molecule with Ig like domain 2 (AMIGO2) as a probable downstream target of both METTL3 and YTH Domain Containing 2 (YTHDC2) in RA-FLS. We revealed that AMIGO2 augmented the activation of RA-FLS and can potentially reverse the phenotypic effects induced by the knockdown of either METTL3 or YTHDC2. Mechanistically, METTL3 knockdown decreased m6A modification in the 5'-untranslated region (5'UTR) of AMIGO2 mRNA, which diminished its interaction with YTHDC2 in RA-FLS. Our findings unveiled that silencing of METTL3 inhibited the proliferation and aggressive behaviors of RA-FLS by downregulating AMIGO2 expression in an m6A-YTHDC2 dependent mechanism, thereby underscoring the pivotal role of the METTL3-m6A-YTHDC2-AMIGO2 axis in modulating RA-FLS phenotypes.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Proliferação de Células , Artrite Reumatoide/patologia , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Helicases/metabolismo , RNA Helicases/farmacologia
18.
Arthritis Res Ther ; 26(1): 77, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532447

RESUMO

OBJECTIVES: Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. METHODS: Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC) and immunofluorescence microscopy (IFM). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. RESULTS: A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, and PG staining colocalized with markers of synovial macrophages and fibroblasts by IFM. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. CONCLUSION: Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.


Assuntos
Osteoartrite , Peptidoglicano , Humanos , Interleucina-6 , Membrana Sinovial/patologia , Osteoartrite/patologia , Líquido Sinovial , Citocinas , Inflamação/patologia , Parede Celular/patologia
19.
Biomaterials ; 306: 122483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330742

RESUMO

Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".


Assuntos
Osteoartrite , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Fatores de Transcrição/metabolismo
20.
Nat Commun ; 15(1): 1394, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374174

RESUMO

Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases.


Assuntos
Bursite , Humanos , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...