Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.287
Filtrar
1.
Methods Mol Biol ; 2794: 169-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630228

RESUMO

Primary neuronal culture is a valuable in vitro model for analyzing the molecular mechanisms underlying the development and function of neural circuits. In contrast to neurons in vivo, primary cultured neurons can easily be transfected with genes of interest or treated with chemicals such as agonists and inhibitors of a specific target molecule. Furthermore, time-dependent morphological changes, such as the acquisition of neuronal polarity, axon elongation, and dendrite branch formation, can be analyzed by using primary neuronal cultures. Here, we describe a method for preparing a primary culture of neurons from the developing cerebral cortex, together with a method for gene transfer to primary cultured cortical neurons.


Assuntos
Axônios , Neurônios , Córtex Cerebral
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612590

RESUMO

Spinal cord injury (SCI) presents a complex challenge in neurorehabilitation, demanding innovative therapeutic strategies to facilitate functional recovery. This study investigates the effects of treadmill training on SCI recovery, emphasizing motor function enhancement, neural tissue preservation, and axonal growth. Our research, conducted on a rat model, demonstrates that controlled treadmill exercises significantly improve motor functions post-SCI, as evidenced by improved scores on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and enhanced electromyography readings. Notably, the training facilitates the preservation of spinal cord tissue, effectively reducing secondary damage and promoting the maintenance of neural fibers in the injured area. A key finding is the significant stimulation of axonal growth around the injury epicenter in trained rats, marked by increased growth-associated protein 43 (GAP43) expression. Despite these advancements, the study notes a limited impact of treadmill training on motoneuron adaptation and highlights minimal changes in the astrocyte and neuron-glial antigen 2 (NG2) response. This suggests that, while treadmill training is instrumental in functional improvements post-SCI, its influence on certain neural cell types and glial populations is constrained.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Animais , Ratos , Humanos , Neuroglia , Eletromiografia , Neurônios Motores , Traumatismos da Medula Espinal/terapia , Axônios
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610088

RESUMO

The axons of neocortical pyramidal neurons are frequently myelinated. Heterogeneity in the topography of axonal myelination in the cerebral cortex has been attributed to a combination of electrophysiological activity, axonal morphology, and neuronal-glial interactions. Previously, we showed that axonal segment length and caliber are critical local determinants of fast-spiking interneuron myelination. However, the factors that determine the myelination of individual axonal segments along neocortical pyramidal neurons remain largely unexplored. Here, we used structured illumination microscopy to examine the extent to which axonal morphology is predictive of the topography of myelination along neocortical pyramidal neurons. We identified critical thresholds for axonal caliber and interbranch distance that are necessary, but not sufficient, for myelination of pyramidal cell axons in mouse primary somatosensory cortex (S1). Specifically, we found that pyramidal neuron axonal segments with a caliber < 0.24 µm or interbranch distance < 18.10 µm are rarely myelinated. Moreover, we further confirmed that these findings in mice are similar for human neocortical pyramidal cell myelination (caliber < 0.25 µm, interbranch distance < 19.00 µm), suggesting that this mechanism is evolutionarily conserved. Taken together, our findings suggest that axonal morphology is a critical correlate of the topography and cell-type specificity of neocortical myelination.


Assuntos
Neocórtex , Células Piramidais , Humanos , Animais , Camundongos , Axônios , Bainha de Mielina , Interneurônios
4.
Int Ophthalmol ; 44(1): 173, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598101

RESUMO

PURPOSE: The ROCK inhibitor ripasudil hydrochloride hydrate was shown to have axonal protective effects in TNF-induced optic nerve degeneration. The α2-adrenoreceptor agonist brimonidine was also shown to exert axonal protection. The current study aimed to elucidate whether additive axonal protection was achieved by the simultaneous injection of ripasudil and brimonidine and examine the association with AMPK activation. METHODS: Intravitreal administration was performed in the following groups: PBS, TNF, or TNF with ripasudil, with brimonidine, or with a combination of ripasudil and brimonidine. Axon numbers were counted to evaluate the effects against axon loss. Immunoblot analysis was performed to examine phosphorylated AMPK expression in optic nerves, and immunohistochemical analysis was performed to evaluate the expression levels of p-AMPK and neurofilament in the optic nerve. RESULTS: Both ripasudil alone or brimonidine alone resulted in significant neuroprotection against TNF-induced axon loss. The combination of ripasudil and brimonidine showed additive protective effects. Combined ripasudil and brimonidine plus TNF significantly upregulated p-AMPK levels in the optic nerve compared with the TNF groups. Immunohistochemical analysis revealed that p-AMPK is present in axons and enhanced by combination therapy. CONCLUSION: The combination of ripasudil and brimonidine may have additive protective effects compared with single-agent treatment alone. These protective effects may be at least partially associated with AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP , Isoquinolinas , Atrofia Óptica , Sulfonamidas , Humanos , Tartarato de Brimonidina , Regulação para Cima , Axônios , Degeneração Neural
5.
Brain Nerve ; 76(4): 361-374, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589281

RESUMO

Recent advances in genetic and antibody testing have limited pathological examination of peripheral nerve specimens. However, when examining peripheral neuropathological findings from a modern perspective, there is often an opportunity to comprehend previously unnoticed observations upon re-examining the same specimen. For example, electron microscopy studies have suggested that the components that distinguish between nodal regions and internodes play a pivotal role in the behavior of macrophages that initiate myelin phagocytosis in the demyelinating form of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy (CIDP). Conversely, some patients previously diagnosed with CIDP were found to possess distinctive mechanisms initiated by autoantibodies against paranodal junction proteins such as neurofascin 155 leading to the emergence of the concept of autoimmune nodopathy. In vasculitis, the roles of neutrophils in antineutrophil cytoplasmic antibody-associated vasculitis, eosinophils in eosinophilic granulomatosis with polyangiitis, and complements in nonsystemic vasculitic neuropathy in tissue damage have also been demonstrated when viewed from a modern perspective. Furthermore, mechanisms attributable to predominant small-fiber loss in hereditary transthyretin amyloidosis have been clarified at an ultrastructural level.


Assuntos
Síndrome de Churg-Strauss , Granulomatose com Poliangiite , Doenças do Sistema Nervoso , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Síndrome de Churg-Strauss/patologia , Granulomatose com Poliangiite/patologia , Axônios/patologia , Autoanticorpos
6.
Genesis ; 62(2): e23594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590146

RESUMO

During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Mucosa Olfatória , Bulbo Olfatório , Axônios/metabolismo , Expressão Gênica
7.
Acta Neurobiol Exp (Wars) ; 84(1): 80-88, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587321

RESUMO

Diffuse axonal injury (DAI), one of the most common and devastating type of traumatic brain injury, is the result of the shear force on axons due to severe rotational acceleration and deceleration. Neurogranin (NRGN) is a postsynaptic protein secreted by excitatory neurons, and synaptic dysfunction can alter extracellular NRGN levels. In this study, we examined NRGN levels in serum and cerebrospinal fluid (CSF) after experimental DAI in terms of their diagnostic value. Experimental DAI was induced using the Marmarou technique in male Wistar albino rats. Serum and CSF NRGN levels of the sham group, one­hour, six­hour, 24­hour, and 72­hour post­DAI groups were measured by ELISA method. DAI was verified by staining with hematoxylin­eosin and ß­amyloid precursor protein in the rat brain samples. While no histopathological and immunohistochemical changes were observed in the early hours of the post­DAI groups, the staining of the ß­APP visibly increased over time, with positivity being most frequent and intense in the 72­hour group. It was found that serum NRGN levels were significantly lower in the 6­hour group than in the sham group. The serum NRGN levels in the 24­hour group were significantly higher than those in the sham group. This study showed a dichotomy of post­DAI serum NRGN levels in consecutive time periods. NRGN levels in CSF were higher in the one­hour group than in the sham group and returned to baseline by 72 hours, although not significantly. Our study provides an impression of serum and CSF NRGN levels in a rat DAI model in consecutive time periods. Further studies are needed to understand the diagnostic value of NRGN.


Assuntos
Lesão Axonal Difusa , Neurogranina , Ratos , Masculino , Animais , Neurogranina/metabolismo , Ratos Wistar , Lesão Axonal Difusa/metabolismo , Lesão Axonal Difusa/patologia , Neurônios/metabolismo , Axônios/metabolismo
8.
Genesis ; 62(1): e23586, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38593162

RESUMO

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/metabolismo , Bulbo Olfatório/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Axônios/metabolismo , Mamíferos
9.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568173

RESUMO

Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.


Assuntos
Transporte Axonal , Transtornos do Neurodesenvolvimento , Terminações Pré-Sinápticas , Humanos , Axônios , Corpo Celular , Mutação , Transtornos do Neurodesenvolvimento/genética
10.
PLoS One ; 19(4): e0300539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574058

RESUMO

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Assuntos
Actinas , Axônios , Axônios/metabolismo , Nocodazol/farmacologia , Actinas/metabolismo , Zíper de Leucina , Regeneração Nervosa/fisiologia , Citoesqueleto/metabolismo , Homeostase , MAP Quinase Quinase Quinases/genética
11.
J Nanobiotechnology ; 22(1): 194, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643117

RESUMO

Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Neuritos/fisiologia , Axônios/fisiologia , Neurônios
12.
Cell Reprogram ; 26(2): 67-78, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598278

RESUMO

Repair strategies for injured peripheral nerve have achieved great progresses in recent years. However, the clinical outcomes remain unsatisfactory. Recent studies have found that exosomes secreted by dental pulp stem cells (DPSC-exos) have great potential for applications in nerve repair. In this study, we evaluated the effects of human DPSC-exos on improving peripheral nerve regeneration. Initially, we established a coculture system between DPSCs and Schwann cells (SCs) in vitro to assess the effect of DPSC-exos on the activity of embryonic dorsal root ganglion neurons (DRGs) growth in SCs. We extracted and labeled human DPSC-exos, which were subsequently utilized in uptake experiments in DRGs and SCs. Subsequently, we established a rat sciatic nerve injury model to evaluate the therapeutic potential of DPSC-exos in repairing sciatic nerve damage. Our findings revealed that DPSC-exos significantly promoted neurite elongation by enhancing the proliferation, migration, and secretion of neurotrophic factors by SCs. In vivo, DPSC-exos administration significantly improved the walking behavior, axon regeneration, and myelination in rats with sciatic nerve injuries. Our study underscores the vast potential of DPSC-exos as a therapeutic tool for tissue-engineered nerve construction.


Assuntos
Exossomos , Regeneração Nervosa , Ratos , Humanos , Animais , Regeneração Nervosa/fisiologia , Ratos Sprague-Dawley , Axônios , Polpa Dentária , Nervo Isquiático/fisiologia , Células-Tronco , Células de Schwann
13.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637413

RESUMO

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Neural/genética , Diabetes Mellitus Experimental/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Axônios/metabolismo , Axônios/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
14.
Arq Neuropsiquiatr ; 82(4): 1-7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641340

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) is the most common cause of acute flaccid paralysis worldwide and can be classified into electrophysiological subtypes and clinical variants. OBJECTIVE: This study aimed to compare the frequency of the sural-sparing pattern (SSP) in subtypes and variants of GBS. METHODS: This retrospective cohort study analyzed clinical and electrophysiological data of 171 patients with GBS hospitalized in public and private hospitals of Natal, Rio Grande do Norte, Brazil, between 1994 and 2018; all cases were followed up by the same neurologist in a reference neurology center. Patients were classified according to electrophysiological subtypes and clinical variants, and the SSP frequency was compared in both categories. The exact Fisher test and Bonferroni correction were used for statistical analysis. RESULTS: The SSP was present in 53% (57 of 107) of the patients with acute inflammatory demyelinating polyradiculoneuropathy (AIDP), 8% (4 of 48) of the patients with axonal subtypes, and 31% (5 of 16) of the equivocal cases. The SSP frequency in the AIDP was significantly higher than in the axonal subtypes (p < 0.0001); the value was kept high after serial electrophysiological examinations. Only the paraparetic subtype did not present SSP. CONCLUSION: The SSP may be present in AIDP and axonal subtypes, including acute motor axonal neuropathy, but it is significantly more present in AIDP. Moreover, the clinical variants reflect a specific pathological process and are correlated to its typical electrophysiological subtype, affecting the SSP frequency.


ANTECEDENTES: A síndrome de Guillain-Barré (GBS) é a causa mais comum de paralisia flácida aguda em todo o mundo e pode ser classificada em subtipos eletrofisiológicos e variantes clínicas. OBJETIVO: Este estudo teve como objetivo comparar a frequência do padrão de preservação do sural (SSP) em subtipos e variantes de GBS. MéTODOS: É um estudo de coorte retrospectivo que analisou dados clínicos e eletrofisiológicos de 171 pacientes com GBS internados em hospitais públicos e privados de Natal, Rio Grande do Norte, Brasil, entre 1994 e 2018. Todos os casos foram acompanhados pelo mesmo neurologista em centro de referência em neurologia. Os pacientes foram classificados de acordo com os subtipos eletrofisiológicos e variantes clínicas e a frequência do SSP foi comparada em ambas as categorias. O teste exato de Fisher e a correção de Bonferroni foram utilizados para análise estatística. RESULTADOS: O SSP esteve presente em 53% (57 de 107) dos pacientes com polirradiculoneuropatia desmielinizante inflamatória aguda (PDIA), em 8% (4 de 48) dos pacientes com subtipos axonais e em 31% (5 de 16) dos casos não definidos. A frequência do SSP no AIDP foi significativamente maior do que nos subtipos axonais (p < 0,0001); o valor manteve-se elevado após exames eletrofisiológicos seriados. Apenas o subtipo paraparético não apresentou SSP. CONCLUSãO: O SSP pode estar presente na PDIA e nos subtipos axonais, incluindo a neuropatia axonal motora aguda, mas está significativamente mais presente na PDIA. Além disso, as variantes clínicas refletem um processo patológico específico e estão correlacionadas ao seu subtipo eletrofisiológico típico, afetando a frequência do SSP.


Assuntos
Síndrome de Guillain-Barré , Humanos , Estudos Retrospectivos , Fenômenos Eletrofisiológicos , Axônios , Brasil , Condução Nervosa/fisiologia
15.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578790

RESUMO

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Assuntos
Alphaherpesvirinae , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Corpo Celular/metabolismo , Proteínas do Envelope Viral/metabolismo , Axônios , Alphaherpesvirinae/metabolismo , Neurônios , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/metabolismo , Exocitose
16.
Phys Rev E ; 109(3-1): 034401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632795

RESUMO

The diffusive ion current is insufficient to explain the fast saltatory conduction observed in myelinated axons and in pain-sensing C fibers in the human nervous system, where the stimulus signal exhibits a velocity two orders of magnitude greater than the upper limit of ion diffusion velocity, even when the diffusion is accelerated by myelin, as in the discrete cable model including the Hodgkin-Huxley mechanism. The agreement with observations has been achieved in a wave-type model of stimulus signal kinetics via synchronized ion local density oscillations propagating as a wave in axons periodically corrugated by myelin segments in myelinated axons, or by periodically distributed rafts with clusters of Na^{+} channels in C fibers. The resulting so-called plasmon-polariton model for saltatory conduction reveals also the specific role of myelin, which is different from what was previously thought. This can be important for identifying a new target for the future treatment of demyelination diseases.


Assuntos
Bainha de Mielina , Condução Nervosa , Humanos , Condução Nervosa/fisiologia , Bainha de Mielina/fisiologia , Axônios/metabolismo , Transporte de Íons , Simulação por Computador , Potenciais de Ação/fisiologia
17.
Anat Histol Embryol ; 53(3): e13034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563613

RESUMO

The ultrastructure of the olfactory system of most fossorial rodents remains largely unexplored. This study sought to investigate the functional structure of the olfactory mucosa and olfactory bulb of two species of fossorial rodents that have distinct behaviour and ecology, the East African root rat (RR) and the naked mole rat (NMR). Transmission electron microscopy and scanning electron microscopy were employed. The basic ultrastructural design of the olfactory system of the two species was largely comparable. In both species, the olfactory mucosa comprised an olfactory epithelium and an underlying lamina propria. The olfactory epithelium revealed olfactory knobs, cilia and microvilli apically and sustentancular cells, olfactory receptor neurons and basal cells in the upper, middle and basal zones, respectively. The lamina propria was constituted by Bowman's glands, olfactory nerve bundles and vasculature supported by loose connective tissue. Within the olfactory bulb, intracellular and extracellular structures including cell organelles, axons and dendrites were elucidated. Notable species differences were observed in the basal zone of the olfactory epithelium and on the luminal surface of the olfactory mucosa. The basal zone of the olfactory epithelium of the RR consisted of a single layer of flattened electron-dense horizontal basal cells while the NMR had juxtaposed electron-dense and electron-lucent heterogenous cells, an occurrence seen as being indicative of quiescent and highly proliferative states of the olfactory epithelia in the two species, respectively. The olfactory epithelial surface of the NMR comprised an elaborate cilia network that intertwined extensively forming loop-like structures whereas in the RR, the surface was rugged and consisted of finger-like processes and irregular masses. With gross and histological studies showing significant differences in the olfactory structures of the two species, these findings are a further manifestation that the olfactory system of the RR and the NMR have evolved differently to reflect their varied olfactory functional needs.


Assuntos
População da África Oriental , Neurônios Receptores Olfatórios , Animais , Humanos , Ratos-Toupeira , Axônios , Cílios
18.
Nat Commun ; 15(1): 2945, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600094

RESUMO

An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.


Assuntos
Axônios , Neurônios , Humanos , Axônios/fisiologia , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo
19.
Sci Rep ; 14(1): 8384, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600114

RESUMO

Spindle-shaped waves of oscillations emerge in EEG scalp recordings during human and rodent non-REM sleep. The association of these 10-16 Hz oscillations with events during prior wakefulness suggests a role in memory consolidation. Human and rodent depth electrodes in the brain record strong spindles throughout the cortex and hippocampus, with possible origins in the thalamus. However, the source and targets of the spindle oscillations from the hippocampus are unclear. Here, we employed an in vitro reconstruction of four subregions of the hippocampal formation with separate microfluidic tunnels for single axon communication between subregions assembled on top of a microelectrode array. We recorded spontaneous 400-1000 ms long spindle waves at 10-16 Hz in single axons passing between subregions as well as from individual neurons in those subregions. Spindles were nested within slow waves. The highest amplitudes and most frequent occurrence suggest origins in CA3 neurons that send feed-forward axons into CA1 and feedback axons into DG. Spindles had 50-70% slower conduction velocities than spikes and were not phase-locked to spikes suggesting that spindle mechanisms are independent of action potentials. Therefore, consolidation of declarative-cognitive memories in the hippocampus may be separate from the more easily accessible consolidation of memories related to thalamic motor function.


Assuntos
Hipocampo , Tálamo , Humanos , Hipocampo/fisiologia , Tálamo/fisiologia , Córtex Cerebral/fisiologia , Axônios , Neurônios , Eletroencefalografia , Sono/fisiologia
20.
PLoS One ; 19(4): e0302251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635746

RESUMO

Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.


Assuntos
NAD , Degeneração Walleriana , Animais , Humanos , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , NAD/metabolismo , Drosophila melanogaster/metabolismo , Axônios/metabolismo , Bactérias/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...