Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.927
Filtrar
1.
Transl Psychiatry ; 14(1): 335, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168993

RESUMO

Long-term synaptic plasticity is critical for adaptive function of the brain, but presynaptic mechanisms of functional plasticity remain poorly understood. Here, we show that changes in synaptic efficacy induced by activation of the cannabinoid type-1 receptor (CB1R), one of the most widespread G-protein coupled receptors in the brain, requires contractility of the neuronal actomyosin cytoskeleton. Specifically, using a synaptophysin-pHluorin probe (sypH2), we show that inhibitors of non-muscle myosin II (NMII) ATPase as well as one of its upstream effectors Rho-associated kinase (ROCK) prevent the reduction of synaptic vesicle release induced by CB1R activation. Using 3D STORM super-resolution microscopy, we find that activation of CB1R induces a redistribution of synaptic vesicles within presynaptic boutons in an actomyosin dependent manner, leading to vesicle clustering within the bouton and depletion of synaptic vesicles from the active zone. We further show, using sypH2, that inhibitors of NMII and ROCK specifically restore the release of the readily releasable pool of synaptic vesicles from the inhibition induced by CB1R activation. Finally, using slice electrophysiology, we find that activation of both NMII and ROCK is necessary for the long-term, but not the short-term, form of CB1R induced synaptic plasticity at excitatory cortico-striatal synapses. We thus propose a novel mechanism underlying CB1R-induced plasticity, whereby CB1R activation leads to a contraction of the actomyosin cytoskeleton inducing a reorganization of the functional presynaptic vesicle pool, preventing vesicle release and inducing long-term depression.


Assuntos
Actomiosina , Plasticidade Neuronal , Terminações Pré-Sinápticas , Receptor CB1 de Canabinoide , Vesículas Sinápticas , Quinases Associadas a rho , Animais , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Actomiosina/metabolismo , Quinases Associadas a rho/metabolismo , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Camundongos , Ratos , Masculino , Miosina Tipo II/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(35): e2404969121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172783

RESUMO

The abundance of CaV2 voltage-gated calcium channels is linked to presynaptic homeostatic plasticity (PHP), a process that recalibrates synaptic strength to maintain the stability of neural circuits. However, the molecular and cellular mechanisms governing PHP and CaV2 channels are not completely understood. Here, we uncover a previously not described form of PHP in Caenorhabditis elegans, revealing an inverse regulatory relationship between the efficiency of neurotransmitter release and the abundance of UNC-2/CaV2 channels. Gain-of-function unc-2SL(S240L) mutants, which carry a mutation analogous to the one causing familial hemiplegic migraine type 1 in humans, showed markedly reduced channel abundance despite increased channel functionality. Reducing synaptic release in these unc-2SL(S240L) mutants restored channel levels to those observed in wild-type animals. Conversely, loss-of-function unc-2DA(D726A) mutants, which harbor the D726A mutation in the channel pore, exhibited a marked increase in channel abundance. Enhancing synaptic release in unc-2DA mutants reversed this increase in channel levels. Importantly, this homeostatic regulation of UNC-2 channel levels is accompanied by the structural remodeling of the active zone (AZ); specifically, unc-2DA mutants, which exhibit increased channel abundance, showed parallel increases in select AZ proteins. Finally, our forward genetic screen revealed that WWP-1, a HECT family E3 ubiquitin ligase, is a key homeostatic mediator that removes UNC-2 from synapses. These findings highlight a self-tuning PHP regulating UNC-2/CaV2 channel abundance along with AZ reorganization, ensuring synaptic strength and stability.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurotransmissores , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Transmissão Sináptica/fisiologia , Plasticidade Neuronal , Mutação , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo N/genética , Neurônios/metabolismo , Proteínas de Membrana
3.
eNeuro ; 11(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137988

RESUMO

Sensory axons projecting to the central nervous system are organized into topographic maps that represent the locations of sensory stimuli. In some sensory systems, even adjacent sensory axons are arranged topographically, forming "fine-scale" topographic maps. Although several broad molecular gradients are known to instruct coarse topography, we know little about the molecular signaling that regulates fine-scale topography at the level of two adjacent axons. Here, we provide evidence that transsynaptic bone morphogenetic protein (BMP) signaling mediates local interneuronal communication to regulate fine-scale topography in the nociceptive system of Drosophila larvae. We first show that the topographic separation of the axon terminals of adjacent nociceptors requires their common postsynaptic target, the A08n neurons. This phenotype is recapitulated by knockdown of the BMP ligand, Decapentaplegic (Dpp), in these neurons. In addition, removing the Type 2 BMP receptors or their effector (Mad transcription factor) in single nociceptors impairs the fine-scale topography, suggesting the contribution of BMP signaling originated from A08n. This signaling is likely mediated by phospho-Mad in the presynaptic terminals of nociceptors to ensure local interneuronal communication. Finally, reducing Dpp levels in A08n reduces the nociceptor-A08n synaptic contacts. Our data support that transsynaptic BMP signaling establishes the fine-scale topography by facilitating the formation of topographically correct synapses. Local BMP signaling for synapse formation may be a developmental strategy that independently regulates neighboring axon terminals for fine-scale topography.


Assuntos
Proteínas Morfogenéticas Ósseas , Proteínas de Drosophila , Células Receptoras Sensoriais , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Drosophila , Larva , Nociceptores/metabolismo , Nociceptores/fisiologia , Animais Geneticamente Modificados , Sinapses/metabolismo , Sinapses/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteínas de Ligação a DNA , Fatores de Transcrição
4.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200284, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39141878

RESUMO

BACKGROUND AND OBJECTIVES: Autoantibodies against the protein leucine-rich glioma inactivated 1 (LGI1) cause the most common subtype of autoimmune encephalitis with predominant involvement of the limbic system, associated with seizures and memory deficits. LGI1 and its receptor ADAM22 are part of a transsynaptic protein complex that includes several proteins involved in presynaptic neurotransmitter release and postsynaptic glutamate sensing. Autoantibodies against LGI1 increase excitatory synaptic strength, but studies that genetically disrupt the LGI1-ADAM22 complex report a reduction in postsynaptic glutamate receptor-mediated responses. Thus, the mechanisms underlying the increased synaptic strength induced by LGI1 autoantibodies remain elusive, and the contributions of presynaptic molecules to the LGI1-transsynaptic complex remain unclear. We therefore investigated the presynaptic mechanisms that mediate autoantibody-induced synaptic strengthening. METHODS: We studied the effects of patient-derived purified polyclonal LGI1 autoantibodies on synaptic structure and function by combining direct patch-clamp recordings from presynaptic boutons and somata of hippocampal neurons with super-resolution light and electron microscopy of hippocampal cultures and brain slices. We also identified the protein domain mediating the presynaptic effect using domain-specific patient-derived monoclonal antibodies. RESULTS: LGI1 autoantibodies dose-dependently increased short-term depression during high-frequency transmission, consistent with increased release probability. The increased neurotransmission was not related to presynaptic calcium channels because presynaptic Cav2.1 channel density, calcium current amplitude, and calcium channel gating were unaffected by LGI1 autoantibodies. By contrast, application of LGI1 autoantibodies homogeneously reduced Kv1.1 and Kv1.2 channel density on the surface of presynaptic boutons. Direct presynaptic patch-clamp recordings revealed that LGI1 autoantibodies cause a pronounced broadening of the presynaptic action potential. Domain-specific effects of LGI1 autoantibodies were analyzed at the neuronal soma. Somatic action potential broadening was induced by polyclonal LGI1 autoantibodies and patient-derived monoclonal autoantibodies targeting the epitempin domain, but not the leucin-rich repeat domain. DISCUSSION: Our results indicate that LGI1 autoantibodies reduce the density of both Kv1.1 and Kv1.2 on presynaptic boutons, without actions on calcium channel density or function, thereby broadening the presynaptic action potential and increasing neurotransmitter release. This study provides a molecular explanation for the neuronal hyperactivity observed in patients with LGI1 autoantibodies.


Assuntos
Potenciais de Ação , Autoanticorpos , Peptídeos e Proteínas de Sinalização Intracelular , Terminações Pré-Sinápticas , Transmissão Sináptica , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , Humanos , Animais , Transmissão Sináptica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Canal de Potássio Kv1.1/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Masculino , Células Cultivadas
5.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123091

RESUMO

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Proteínas de Membrana , Camundongos Knockout , Plasticidade Neuronal , Vesículas Sinápticas , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Plasticidade Neuronal/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Vesículas Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Hipocampo/metabolismo , Exocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
6.
Elife ; 132024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046788

RESUMO

One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.


Assuntos
Hipocampo , Memória de Curto Prazo , Proteínas rac1 de Ligação ao GTP , Animais , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Memória de Curto Prazo/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Transdução de Sinais , Masculino , Fosforilação , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia
7.
Cell ; 187(18): 5102-5117.e16, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39043179

RESUMO

Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs. Using these tools, we show that neuropeptides, not glutamate, encode the unconditioned stimulus in the parabrachial-to-amygdalar threat pathway during Pavlovian threat learning. We also show that neuropeptides play important roles in encoding positive valence and suppressing conditioned threat response in the amygdala-to-parabrachial endogenous opioidergic circuit. These results show that our sensor and silencer for presynaptic peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake, behaving animals.


Assuntos
Medo , Neuropeptídeos , Animais , Neuropeptídeos/metabolismo , Camundongos , Medo/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Transmissão Sináptica , Masculino , Camundongos Endogâmicos C57BL , Ponte/metabolismo , Ponte/fisiologia , Condicionamento Clássico , Terminações Pré-Sinápticas/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo
8.
Brain Struct Funct ; 229(7): 1757-1768, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052094

RESUMO

Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.


Assuntos
Astrócitos , Modelos Animais de Doenças , Neuralgia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neuralgia/patologia , Neuralgia/metabolismo , Masculino , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Ratos , Bulbo/metabolismo , Bulbo/patologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Dendritos/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/ultraestrutura
9.
Nature ; 632(8023): 147-156, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020173

RESUMO

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Assuntos
Adaptação Fisiológica , Axônios , Ritmo Circadiano , Neurotransmissores , Fotoperíodo , Animais , Feminino , Camundongos , Adaptação Fisiológica/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Escuridão , Núcleo Dorsal da Rafe/citologia , Núcleo Dorsal da Rafe/metabolismo , Vias Neurais/fisiologia , Neurotransmissores/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Vírus da Raiva , Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia
10.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866497

RESUMO

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Assuntos
Camundongos Knockout , Fibras Musgosas Hipocampais , Plasticidade Neuronal , Terminações Pré-Sinápticas , Sinapsinas , Animais , Sinapsinas/metabolismo , Sinapsinas/genética , Fibras Musgosas Hipocampais/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia
11.
Nat Commun ; 15(1): 4872, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849331

RESUMO

Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that, to our knowledge, has not been investigated in these species-the connections between projection neurons and the Kenyon cells of the mushroom body-and identify species-specific connectivity patterns. We found that neurons encoding food odors connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific connectivity differences reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.


Assuntos
Evolução Biológica , Drosophila , Corpos Pedunculados , Especificidade da Espécie , Animais , Corpos Pedunculados/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/anatomia & histologia , Drosophila/fisiologia , Drosophila/anatomia & histologia , Neurônios/fisiologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/anatomia & histologia , Filogenia , Olfato/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Condutos Olfatórios/anatomia & histologia , Masculino , Feminino , Terminações Pré-Sinápticas/fisiologia
12.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891114

RESUMO

Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for ß-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.


Assuntos
Cálcio , Hipocampo , Terminações Pré-Sinápticas , Animais , Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Knockout , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Sinalização do Cálcio , Técnicas de Inativação de Genes , Neurexinas
13.
Acta Neuropathol ; 147(1): 98, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861157

RESUMO

Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido Glutâmico/metabolismo , Núcleos Anteriores do Tálamo/metabolismo , Núcleos Anteriores do Tálamo/patologia , Calbindina 2/metabolismo , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia
14.
Neuroreport ; 35(12): 805-812, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38935067

RESUMO

Neuromuscular junctions are innervated by motor and sympathetic nerves. The sympathetic modulation of motor innervation shows functional decline during aging, but the cellular and molecular mechanism of this change is not fully known. This study aimed to evaluate the effect of aging on sympathetic nerves and synaptic proteins at mouse neuromuscular junctions. Sympathetic nerves, presynaptic, and postsynaptic proteins of sympathetic nerves at neuromuscular junctions were visualized using immunohistochemistry, and aging-related changes were compared between adult-, aged-, and nicotinamide mononucleotide (NMN) administered aged mice. Sympathetic nerves were detected by anti-tyrosine hydroxylase antibody, and presynaptic protein vesicular monoamine transporter 2 colocalized with the sympathetic nerves. These two signals surrounded motor nerve terminals and acetylcholine receptor clusters. Postsynaptic neurotransmitter receptor ß2-adrenergic receptors colocalized with motor nerve terminals and resided in reduced density at extrasynaptic sarcolemma. The signal intensity of the sympathetic nerve marker did not show a significant difference at neuromuscular junctions between 8.5-month-old adult mice and 25-month-old aged mice. However, the signal intensity of vesicular monoamine transporter 2 and ß2-adrenergic receptors showed age-related decline at neuromuscular junctions. Interestingly, both age-related declines reverted to the adult level after 1 month of oral administration of NMN by drinking water. In contrast, NMN administration did not alter the expression level of sympathetic marker tyrosine hydroxylase at neuromuscular junctions. The results suggest a functional decline of sympathetic nerves at aged neuromuscular junctions due to decreases in presynaptic and postsynaptic proteins, which can be reverted to the adult level by NMN administration.


Assuntos
Envelhecimento , Junção Neuromuscular , Mononucleotídeo de Nicotinamida , Animais , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Camundongos , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/administração & dosagem , Masculino , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
15.
J Biomech Eng ; 146(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888293

RESUMO

The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Neurônios , Terminações Pré-Sinápticas , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Modelos Neurológicos , Animais , Potenciais de Ação , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 121(26): e2315100121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889143

RESUMO

Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Terminações Pré-Sinápticas , Receptores de GABA-A , Sinapses , Ácido gama-Aminobutírico , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ácido gama-Aminobutírico/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
17.
Learn Mem ; 31(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38862173

RESUMO

The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.


Assuntos
Proteínas de Drosophila , Memória , Corpos Pedunculados , Terminações Pré-Sinápticas , Proteínas rab3 de Ligação ao GTP , Animais , Corpos Pedunculados/fisiologia , Corpos Pedunculados/metabolismo , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas de Drosophila/metabolismo , Memória/fisiologia , Proteínas rab3 de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Proteínas do Tecido Nervoso/metabolismo , Drosophila , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230475, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853563

RESUMO

Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse retrogradely into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is required for kainate receptor (KAR)-dependent presynaptic form of LTP (pre-LTP) in the adult insular cortex (IC). In the IC, we found that inhibition of NO synthase erased the maintenance of pre-LTP, while the induction of pre-LTP required the activation of KAR. Furthermore, NO is essential for pre-LTP induced between two pyramidal cells in the IC using the double patch-clamp recording. These results suggest that NO is required for homosynaptic pre-LTP in the IC. Our results present strong evidence for the critical roles of NO in pre-LTP in the IC. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Córtex Cerebral , Potenciação de Longa Duração , Óxido Nítrico , Terminações Pré-Sinápticas , Potenciação de Longa Duração/fisiologia , Óxido Nítrico/metabolismo , Animais , Córtex Cerebral/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de Ácido Caínico/metabolismo , Técnicas de Patch-Clamp , Ratos , Células Piramidais/fisiologia , Óxido Nítrico Sintase/metabolismo , Camundongos
19.
Neurology ; 102(11): e209453, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759132

RESUMO

BACKGROUND AND OBJECTIVES: Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS: Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS: All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION: DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Feminino , Idoso , Masculino , Estudos Retrospectivos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Idoso de 80 Anos ou mais , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Estudos de Coortes , Degeneração Corticobasal/diagnóstico por imagem , Degeneração Corticobasal/metabolismo , Dopamina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Sensibilidade e Especificidade , Imageamento Dopaminérgico
20.
Biochem Biophys Res Commun ; 716: 150010, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704892

RESUMO

Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.


Assuntos
Cálcio , Córtex Cerebral , Corpo Estriado , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Huntington , Mitocôndrias , Terminações Pré-Sinápticas , Animais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Terminações Pré-Sinápticas/metabolismo , Células Cultivadas , Neurônios/metabolismo , Neurônios/patologia , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA