Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87.845
Filtrar
1.
Biomed Eng Online ; 23(1): 42, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614974

RESUMO

BACKGROUND: Computed tomography (CT) is an imaging modality commonly used for studies of internal body structures and very useful for detailed studies of body composition. The aim of this study was to develop and evaluate a fully automatic image registration framework for inter-subject CT slice registration. The aim was also to use the results, in a set of proof-of-concept studies, for voxel-wise statistical body composition analysis (Imiomics) of correlations between imaging and non-imaging data. METHODS: The current study utilized three single-slice CT images of the liver, abdomen, and thigh from two large cohort studies, SCAPIS and IGT. The image registration method developed and evaluated used both CT images together with image-derived tissue and organ segmentation masks. To evaluate the performance of the registration method, a set of baseline 3-single-slice CT images (from 2780 subjects including 8285 slices) from the SCAPIS and IGT cohorts were registered. Vector magnitude and intensity magnitude error indicating inverse consistency were used for evaluation. Image registration results were further used for voxel-wise analysis of associations between the CT images (as represented by tissue volume from Hounsfield unit and Jacobian determinant) and various explicit measurements of various tissues, fat depots, and organs collected in both cohort studies. RESULTS: Our findings demonstrated that the key organs and anatomical structures were registered appropriately. The evaluation parameters of inverse consistency, such as vector magnitude and intensity magnitude error, were on average less than 3 mm and 50 Hounsfield units. The registration followed by Imiomics analysis enabled the examination of associations between various explicit measurements (liver, spleen, abdominal muscle, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), thigh SAT, intermuscular adipose tissue (IMAT), and thigh muscle) and the voxel-wise image information. CONCLUSION: The developed and evaluated framework allows accurate image registrations of the collected three single-slice CT images and enables detailed voxel-wise studies of associations between body composition and associated diseases and risk factors.


Assuntos
Composição Corporal , Tomografia Computadorizada por Raios X , Humanos , Tecido Adiposo , Fígado , Projetos de Pesquisa
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612491

RESUMO

Meat color traits directly influence consumer acceptability and purchasing decisions. Nevertheless, there is a paucity of comprehensive investigation into the genetic mechanisms underlying meat color traits in pigs. Utilizing genome-wide association studies (GWAS) on five meat color traits and the detection of selection signatures in pig breeds exhibiting distinct meat color characteristics, we identified a promising candidate SNP, 6_69103754, exhibiting varying allele frequencies among pigs with different meat color characteristics. This SNP has the potential to affect the redness and chroma index values of pork. Moreover, transcriptome-wide association studies (TWAS) analysis revealed the expression of candidate genes associated with meat color traits in specific tissues. Notably, the largest number of candidate genes were observed from transcripts derived from adipose, liver, lung, spleen tissues, and macrophage cell type, indicating their crucial role in meat color development. Several shared genes associated with redness, yellowness, and chroma indices traits were identified, including RINL in adipose tissue, ENSSSCG00000034844 and ITIH1 in liver tissue, TPX2 and MFAP2 in lung tissue, and ZBTB17, FAM131C, KIFC3, NTPCR, and ENGSSSCG00000045605 in spleen tissue. Furthermore, single-cell enrichment analysis revealed a significant association between the immune system and meat color. This finding underscores the significance of the immune system associated with meat color. Overall, our study provides a comprehensive analysis of the genetic mechanisms underlying meat color traits, offering valuable insights for future breeding efforts aimed at improving meat quality.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Suínos/genética , Tecido Adiposo , Adiposidade , Carne
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612899

RESUMO

Lifestyle factors, particularly physical inactivity, are closely linked to the onset of numerous metabolic diseases. Adipose tissue (AT) has been extensively studied for various metabolic diseases such as obesity, type 2 diabetes, and immune system dysregulation due to its role in energy metabolism and regulation of inflammation. Physical activity is increasingly recognized as a powerful non-pharmacological tool for the treatment of various disorders, as it helps to improve metabolic, immune, and inflammatory functions. However, chronic excessive training has been associated with increased inflammatory markers and oxidative stress, so much so that excessive training overload, combined with inadequate recovery, can lead to the development of overtraining syndrome (OTS). OTS negatively impacts an athlete's performance capabilities and significantly affects both physical health and mental well-being. However, diagnosing OTS remains challenging as the contributing factors, signs/symptoms, and underlying maladaptive mechanisms are individualized, sport-specific, and unclear. Therefore, identifying potential biomarkers that could assist in preventing and/or diagnosing OTS is an important objective. In this review, we focus on the possibility that the endocrine functions of AT may have significant implications in the etiopathogenesis of OTS. During physical exercise, AT responds dynamically, undergoing remodeling of endocrine functions that influence the production of adipokines involved in regulating major energy and inflammatory processes. In this scenario, we will discuss exercise about its effects on AT activity and metabolism and its relevance to the prevention and/or development of OTS. Furthermore, we will highlight adipokines as potential markers for diagnosing OTS.


Assuntos
Diabetes Mellitus Tipo 2 , Esportes , Humanos , Adipocinas , Exercício Físico , Tecido Adiposo
4.
Nutrients ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612973

RESUMO

Worldwide, childhood obesity cases continue to rise, and its prevalence is known to increase the risk of non-communicable diseases typically found in adults, such as cardiovascular disease and type 2 diabetes mellitus. Thus, comprehending its multiple causes to build healthier approaches and revert this scenario is urgent. Obesity development is strongly associated with high fructose intake since the excessive consumption of this highly lipogenic sugar leads to white fat accumulation and causes white adipose tissue (WAT) inflammation, oxidative stress, and dysregulated adipokine release. Unfortunately, the global consumption of fructose has increased dramatically in recent years, which is associated with the fact that fructose is not always evident to consumers, as it is commonly added as a sweetener in food and sugar-sweetened beverages (SSB). Therefore, here, we discuss the impact of excessive fructose intake on adipose tissue biology, its contribution to childhood obesity, and current strategies for reducing high fructose and/or free sugar intake. To achieve such reductions, we conclude that it is important that the population has access to reliable information about food ingredients via food labels. Consumers also need scientific education to understand potential health risks to themselves and their children.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Pediátrica , Criança , Adulto , Humanos , Obesidade Pediátrica/epidemiologia , Obesidade Pediátrica/etiologia , Obesidade Pediátrica/prevenção & controle , Tecido Adiposo , Tecido Adiposo Branco , Frutose/efeitos adversos
5.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613013

RESUMO

This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Restrição Calórica , Masculino , Feminino , Gravidez , Animais , Ratos , Tecido Adiposo , Dieta Ocidental , Suplementos Nutricionais
6.
Sci Rep ; 14(1): 8469, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605098

RESUMO

Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.


Assuntos
Tecido Adiposo , Neoplasias , Humanos , Tecido Adiposo/patologia , Adipócitos , Obesidade/complicações , Gordura Subcutânea/patologia , Neoplasias/patologia
7.
Cells ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607021

RESUMO

Human adipose-derived stromal cells (ADSCs) are an important resource for cell-based therapies. However, the dynamics of ADSCs after transplantation and their mechanisms of action in recipients remain unclear. Herein, we generated genetically engineered mouse ADSCs to clarify their biodistribution and post-transplantation status and to analyze their role in recipient mesenchymal tissue modeling. Immortalized ADSCs (iADSCs) retained ADSC characteristics such as stromal marker gene expression and differentiation potential. iADSCs expressing a fluorescent reporter gene were seeded into biocompatible nonwoven fabric sheets and transplanted into the dorsal subcutaneous region of neonatal mice. Transplanted donor ADSCs were distributed as CD90-positive stromal cells on the sheets and survived 1 month after transplantation. Although accumulation of T lymphocytes or macrophages inside the sheet was not observed with or without donor cells, earlier migration and accumulation of recipient blood vascular endothelial cells (ECs) inside the sheet was observed in the presence of donor cells. Thus, our mouse model can help in studying the interplay between donor ADSCs and recipient cells over a 1-month period. This system may be of value for assessing and screening bioengineered ADSCs in vivo for optimal cell-based therapies.


Assuntos
Tecido Adiposo , Células Endoteliais , Humanos , Camundongos , Animais , Distribuição Tecidual , Adipócitos , Células Estromais
8.
Int Wound J ; 21(4): e14854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619232

RESUMO

Chronic wounds, characterized by prolonged healing processes, pose a significant medical challenge with multifaceted aetiologies, including local and systemic factors. Here, it explores the complex pathogenesis of chronic wounds, emphasizing the disruption in the normal phases of wound healing, particularly the inflammatory phase, leading to an imbalance in extracellular matrix (ECM) dynamics and persistent inflammation. Senescent cell populations further contribute to impaired wound healing in chronic lesions. Traditional medical management focuses on addressing underlying causes, but many chronic wounds resist to conventional treatments, necessitating innovative approaches. Recent attention has turned to autologous orthobiologics, such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and mesenchymal stem cells (MSCs), as potential regenerative interventions. These biologically derived materials, including bone marrow aspirate/concentrate (BMA/BMAC) and adipose tissue-derived stem cells (ADSCs), exhibit promising cytokine content and regenerative potential. MSCs, in particular, have emerged as key players in wound healing, influencing inflammation and promoting tissue regeneration. This paper reviews relevant scientific literature regarding basic science and brings real-world evidence regarding the use of orthobiologics in the treatment of chronic wounds, irrespective of aetiology. The discussion highlights the regenerative properties of PRP, PRF, BMA, BMAC and SVF, showcasing their potential to enhance wound healing. Despite advancements, further research is essential to elucidate the specific roles of each orthobiologic and determine optimal applications for different wound types. The conclusion underscores the evolving landscape in chronic wound management, with a call for more comprehensive studies to refine treatment strategies and maximize the benefits of regenerative medicine.


Assuntos
Tecido Adiposo , Citocinas , Humanos , Matriz Extracelular , Inflamação , Cicatrização
9.
Clin Ter ; 175(2): 135-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571472

RESUMO

Background: Recently, cold atmospheric plasma (CAP), as well as adipose mesenchymal stem cells derived exosomes (ADMSCs-EX), have been applied separately to wound healing treatment. However, no study has investigated the additive effect on the healing mechanism of these two methods in the same skin lesion treatment model. Aim: We conduct this study to describe the results of using CAP and human ADMSCs-EX on in vitro wound healing. Methods: Exosomes were isolated from donor adipose tissue samples by ultracentrifugation method, characterized by transmission electron microscopy (TEM) and Western blot. Assessment in vitro wound healing on proliferation and migration evaluation experiments on human fibroblasts with culture medium supplemented with 10µg total exosomal proteins/1 mL and irradiated with CAP with an intensity of 30 seconds/cm2. Results: Experimental results to evaluate the ability to stimulate fibroblast migration, showed that cell migration speed in the group supplemented with ADMSCs-EX was equivalent to the group with a combination of CAP and ADMSCs-EX and had the highest rate with 87.8 ± 4.2 % and 84.4 ± 5.3 % while in the control group it was the lowest with 61.9 ± 11.4% (p<0.05). The group supplemented with CAP gave fibroblast proliferation and migration results similar to the control group (p>0.05), showing the safety of CAP with the growth of the cells. Conclusions: Therefore, in animal models, we intend to use a combination of these two therapies by using ADMSCs-EX injection therapy into the dermis at the wound edge to avoid the impact of CAP affecting the cell proliferation.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Gases em Plasma , Animais , Humanos , Gases em Plasma/farmacologia , Tecido Adiposo , Cicatrização
10.
Ann Plast Surg ; 92(4S Suppl 2): S112-S116, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556658

RESUMO

INTRODUCTION: Autologous fat grafting is a method of improving aesthetic outcomes after both breast reconstruction and aesthetic surgery through volume enhancement and tissue contouring. Long-lasting effects are linked to greater patient satisfaction and more optimal augmentation results. Harvesting, processing, and injection techniques may all affect the longevity of deformity filling. Our objective is to evaluate the effect of lipoaspirate processing modality on longitudinal volume retention after surgery. METHODS: A prospective, single-institution, randomized control trial placed consented postmastectomy fat grafting patients into 1 of 3 treatment arms (active filtration, low-pressure decantation, and standard decantation) in a 1:1:1 ratio. A preoperative 3-dimensional scan of the upper torso was taken as baseline. At the 3-month postoperative visit, another 3D scan was taken. Audodesk Meshmixer was used to evaluate the volume change. RESULTS: The volume of fat injected during the initial procedure did not differ significantly between the treatment arms (P > 0.05). Both active filtration and low-pressure decantation resulted in higher percentage volume retention than traditional decantation (P < 0.05). Active filtration and low-pressure decantation exhibited comparable degrees of fat maintenance at 3 months (P > 0.05). DISCUSSION: Compared with using traditional decantation as the lipoaspirate purification technique, active filtration and low-pressure decantation may have led to higher levels of cell viability by way of reduced cellular debris and other inflammatory components that may contribute to tissue resorption and necrosis. Further immunohistochemistry studies are needed to examine whether active filtration and low-pressure decantation lead to lipoaspirates with more concentrated viable adipocytes, progenitor cells, and factors for angiogenesis.


Assuntos
Neoplasias da Mama , Lipectomia , Humanos , Feminino , Tecido Adiposo/transplante , Lipectomia/métodos , Estudos Prospectivos , Coleta de Tecidos e Órgãos , Mastectomia , Transplante Autólogo
11.
Ann Plast Surg ; 92(4S Suppl 2): S207-S209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556675

RESUMO

INTRODUCTION: Autologous fat grafting (AFG) is a common technique used to enhance aesthetic outcomes in postmastectomy breast reconstruction patients. Adipokines are hormones secreted by adipose tissue that play a critical role in regulating metabolic processes and the immune system. However, dysregulated adipokine secretion and signaling can contribute to the development and progression of cancer by promoting angiogenesis, altering the immune response, and inducing the epithelial mesenchymal transition. We aimed to assess how breast cancer cells behave in conditioned media derived from fat grafting lipoaspirates and gain a better understanding of the potential interactions that may occur within the tumor microenvironment. METHODS: Patients who were undergoing AFG as a part of breast reconstruction at NY-Presbyterian/Weill Cornell Medical Center between March 2021 and July 2023 were consented and enrolled in the study. This study was approved by the Weill Cornell Medicine Institutional Review Board (#20-10022850-14). Conditioned media is created using 20% of patient lipoaspirate secretome and 80% starving media. The growth of MCF-7, a human ER/PR+ breast cancer cell line, in conditioned media is assessed using CyQUANT. RESULTS: The breast cancer cells incubated in conditioned media displayed similar growth trends as those in complete media, which is enriched for cell growth (P > 0.05). MCF-7 cell behavior in conditioned media differed significantly from their proliferation patterns when serum starved in 100% starving media (P < 0.05). DISCUSSION: Our results suggest that there may be inherent factors within the lipoaspirate that may promote MCF-7 proliferation. One potential implication is that AFG used for breast reconstruction should be delayed until local-regional disease control has been established. In addition, based on the in vitro proliferation patterns of breast cancer cells in conditioned media, the safety profile of AFG may be enhanced if the procedure is performed after attaining negative margins and the completion breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/cirurgia , Células MCF-7 , Meios de Cultivo Condicionados/farmacologia , Mastectomia , Proliferação de Células , Tecido Adiposo/transplante , Microambiente Tumoral
12.
Diabetes Metab Res Rev ; 40(4): e3798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558269

RESUMO

AIMS: To investigate clusters of adipose tissue dysfunction, that is, with adipose tissue insulin resistance (ADIPO-IR) and large waist circumference (WC), identify a worse lipidomic profile characterised by a high proportion of lipids rich in saturated fatty acids (SFA). MATERIALS AND METHODS: Hierarchical clustering based on WC and ADIPO-IR (calculated as fasting plasma non-esterified fatty acids times fasting plasma insulin, FFA×INS), was performed in 192 adults with overweight/obesity and type 2 diabetes (T2D) treated with metformin (HbA1c = 7.8%). Free fatty acid composition and lipidomic profile were measured by mass spectrometry (GC-MS and LC-MSQTOF). Indexes of fatty acid desaturation (stearoyl-coA desaturase-1 activity, SCD116 = palmitoleic acid/palmitic acid and SCD118 = oleic acid/stearic acid) and of insulin resistance (HOMA-IR) were also calculated. RESULTS: Three clusters were identified: CL1 (ADIPO-IR = 4.9 ± 2.4 and WC = 96±7 cm, mean ± SD), CL2 (ADIPO-IR = 6.5 ± 2.5 and WC = 114 ± 7 cm), and CL3 (ADIPO-IR = 15.0 ± 4.7 and WC = 107 ± 8 cm). Insulin concentrations, ADIPO-IR, and HOMA-IR significantly increased from CL1 to CL3 (all p < 0.001), while fasting glucose concentrations, HbA1c, dietary lipids and caloric intake were similar. Moreover, CL3 showed significantly higher concentrations of monounsaturated free fatty acids, oleic and palmitoleic acids, triglycerides (TAG) rich in saturated FA and associated with de novo lipogenesis (i.e., TAG 46-50), higher SCD116, SCD118, ceramide (d18:0/18:0), and phosphatidylcholine aa(36:5) compared with CL1/CL2 (all p < 0.005). CONCLUSIONS: High ADIPO-IR and large WC identify a worse lipid profile in T2D characterised by complex lipids rich in SFA, likely due to de novo synthesis given higher plasma monounsaturated FFA and increased desaturase activity indexes. REGISTRATION NUMBER TRIAL: ID NCT00700856 https://clinicaltrials.gov.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Humanos , Hemoglobinas Glicadas , Controle Glicêmico , Lipidômica , Ácidos Graxos , Tecido Adiposo , Ácidos Graxos não Esterificados , Insulina
13.
Physiol Rep ; 12(7): e15995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561245

RESUMO

Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.


Assuntos
Resistência à Insulina , Obesidade , Adulto , Humanos , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Gordura Subcutânea/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Expressão Gênica , Tecido Adiposo/metabolismo
14.
Front Immunol ; 15: 1360065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558823

RESUMO

Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.


Assuntos
Mitocôndrias , Polifenóis , Humanos , Polifenóis/farmacologia , Mitocôndrias/metabolismo , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo
15.
Gen Comp Endocrinol ; 352: 114516, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593942

RESUMO

Cortisol is secreted from the adrenal cortex in response to stress, and its circulating levels are used as robust physiological indicators of stress intensity in various animals. Cortisol is also produced locally in adipose tissue by the conversion of steroid hormones such as cortisone, which is related to fat accumulation. Circulating cortisol levels, probably induced by cold stress, increase in cetaceans under cold conditions. However, whether cortisol production in subcutaneous adipose tissue is enhanced when fat accumulation is renewed during the cold season remains unclear. Therefore, in this study, we examine the effect of environmental temperature on the expression of cortisol synthesis-related enzymes and a glucocorticoid receptor in the subcutaneous fat (blubber) and explore the association between these expressions and fluctuations in circulating cortisol levels in common bottlenose dolphins (Tursiops truncatus). Skin biopsies were obtained seasonally from eight female dolphins, and seasonal differences in the expression of target genes in the blubber were analyzed. Blood samples were collected throughout the year, and cortisol levels were measured. We found that the expressions of cytochrome P450 family 21 subfamily A member 2 (CYP21A2) and nuclear receptor subfamily 3 group C member 1 (NR3C1), a glucocorticoid receptor, were increased in the cold season, and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) showed a similar trend. Blood cortisol levels increased when the water temperature decreased. These results suggest that the conversion of 17-hydroxyprogesterone to cortisol via 11-deoxycortisol and/or of cortisone to cortisol is enhanced under cold conditions, and the physiological effects of cortisol in subcutaneous adipose tissue may contribute to on-site lipid accumulation and increase the circulating cortisol concentrations. The results obtained in this study highlight the role of cortisol in the regulation of the blubber that has developed to adapt to aquatic life.


Assuntos
Golfinho Nariz-de-Garrafa , Cortisona , Animais , Feminino , Hidrocortisona/metabolismo , Estações do Ano , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Cortisona/metabolismo , Tecido Adiposo/metabolismo
16.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
17.
Sci Rep ; 14(1): 8842, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632317

RESUMO

Sarcopenia is a serious systemic disease that reduces overall survival. TAVI is selectively performed in patients with severe aortic stenosis who are not indicated for open cardiac surgery due to severe polymorbidity. Artificial intelligence-assisted body composition assessment from available CT scans appears to be a simple tool to stratify these patients into low and high risk based on future estimates of all-cause mortality. Within our study, the segmentation of preprocedural CT scans at the level of the lumbar third vertebra in patients undergoing TAVI was performed using a neural network (AutoMATiCA). The obtained parameters (area and density of skeletal muscles and intramuscular, visceral, and subcutaneous adipose tissue) were analyzed using Cox univariate and multivariable models for continuous and categorical variables to assess the relation of selected variables with all-cause mortality. 866 patients were included (median(interquartile range)): age 79.7 (74.9-83.3) years; BMI 28.9 (25.9-32.6) kg/m2. Survival analysis was performed on all automatically obtained parameters of muscle and fat density and area. Skeletal muscle index (SMI in cm2/m2), visceral (VAT in HU) and subcutaneous adipose tissue (SAT in HU) density predicted the all-cause mortality in patients after TAVI expressed as hazard ratio (HR) with 95% confidence interval (CI): SMI HR 0.986, 95% CI (0.975-0.996); VAT 1.015 (1.002-1.028) and SAT 1.014 (1.004-1.023), all p < 0.05. Automatic body composition assessment can estimate higher all-cause mortality risk in patients after TAVI, which may be useful in preoperative clinical reasoning and stratification of patients.


Assuntos
Sarcopenia , Humanos , Idoso , Inteligência Artificial , Tecido Adiposo , Músculo Esquelético , Gordura Subcutânea , Composição Corporal/fisiologia , Estudos Retrospectivos
18.
Skin Res Technol ; 30(4): e13700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634195

RESUMO

BACKGROUND: Stromal vascular fraction (SVF) cells derived from adipose tissue and platelet-rich plasma (PRP) are among novel treatments for androgenetic alopecia (AGA). We aimed to investigate the effect of adding SVF to PRP and compare it to administering PRP injection alone. METHODS: Eighteen patients were randomly divided into two groups of nine. The PRP group was treated with PRP at all three visits at 1-month intervals, while the SVF-PRP group received an SVF injection on the first visit and a PRP injection on the second and third visits. Each group was evaluated at baseline and 20 weeks after the therapy's initiation. RESULTS: Changes in mean hair diameter and hair count compared to baseline were significant in both groups. The PRP group experienced a greater increase in mean hair count than the SVF-PRP group, and the SVF-PRP group had a marginally greater increase in hair diameter than the PRP group. These differences were not statistically significant compared to each other. The patient and physician assessment scores exceeded the mean (on a scale from 0: poor to 3: excellent) in both groups. CONCLUSION: Adding one SVF injection to two PRP treatment sessions versus three PRP injections alone had no significant difference in evaluated variables. If additional research demonstrates the same results, we suggest that multiple SVF injection sessions may be required to produce a statistically significant difference compared to PRP injection alone. Moreover, considering lower cost and greater accessibility of PRP, it can be used before SVF in the treatment of AGA.


Assuntos
Plasma Rico em Plaquetas , Fração Vascular Estromal , Humanos , Alopecia/terapia , Cabelo , Tecido Adiposo , Resultado do Tratamento
19.
Front Immunol ; 15: 1381227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638434

RESUMO

Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
20.
BMC Cardiovasc Disord ; 24(1): 210, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627656

RESUMO

BACKGROUND: Cardiovascular disease continues to be a leading cause of mortality worldwide, highlighting the need to explore innovative approaches to improve cardiovascular health outcomes. Time-restricted fasting (TRF) is a dietary intervention that involves limiting the time window for food consumption. It has gained attention for its potential benefits on metabolic health and weight management. This study aims to investigate the impact of TRF on key risk factors, including body weight, glucose metabolism, blood pressure, and lipid profile. METHODS: We conducted a systematic search in five databases (Scopus, Embase, PubMed, Cochrane, and Web of Science) for relevant studies up to January 2023. After applying inclusion criteria, 12 studies were eligible for analysis. Quality assessment was conducted using the ROB-2.0 tool and ROBINS-I. Risk of bias was mapped using Revman 5.3, and data analysis included Hartung-Knapp adjustment using R 4.2.2. RESULTS: The group that underwent the TRF intervention exhibited a significant decrease in body weight (SMD: -0.22; 95%CI: -0.41, -0.04; P < 0.05) and fat mass (SMD: -0.19; 95%CI: -0.36, -0.02; P < 0.05), while maintaining lean mass (SMD: -0.09; 95%CI: -0.08, 0.26; P > 0.05). CONCLUSION: TRF has shown potential as a treatment strategy for reducing total body weight by targeting adipose tissue, with potential improvements in cardiometabolic function.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco , Tecido Adiposo , Peso Corporal , Jejum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...