Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.300
Filtrar
1.
Pediatr Cardiol ; 45(3): 513-519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308060

RESUMO

Tissue hypoxia increases erythropoietin production and release of immature erythrocytes that can be measured using nucleated red blood cell counts (nRBC). We hypothesized that hypoxia due to congenital heart disease (CHD) is chronic and is better tolerated than hypoxia due to respiratory disease (RD), which is an acute stress in newborns leading to higher nRBC. This study assesses the utility of nRBC as a marker to differentiate hypoxia due to CHD vs RD in term neonates. This was a single-center, retrospective study of term neonates with cyanosis from 2015 to 2022. Neonates < 37 weeks of gestation, with hypoxic-ischemic encephalopathy, and those with other causes of cyanosis were excluded. The patients were divided into 2 groups: cyanotic CHD and cyanotic RD. Clinical and laboratory data done within 12 h and 24-36 h after birth were collected. Data are represented as median and Interquartile range. Of 189 patients with cyanosis, 80 had CHD and 109 had RD. The absolute nRBC count at ≤ 12 h of age was lower in the CHD (360 cells/mm3) compared to RD group (2340 cells/mm3) despite the CHD group having significantly lower baseline saturations. A value of 1070 cells/mm3 was highly sensitive and specific for differentiating CHD from RD. The positive predictive value for this cut-off value of 1070 cells/mm3 was 0.94 and the negative predictive value was 0.89. The absolute nRBC is a simple screening test and is available worldwide. A nRBC < 1070 cells/mm3 in cyanotic newborns should hasten the search for CHD etiology with the possible need for prostaglandin therapy.


Assuntos
Eritroblastos , Cardiopatias Congênitas , Recém-Nascido , Humanos , Estudos Retrospectivos , Contagem de Eritrócitos , Cianose/diagnóstico , Cianose/etiologia , Hipóxia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico
2.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38315834

RESUMO

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Assuntos
Anemia , Baço , Camundongos , Animais , Baço/metabolismo , Eritroblastos/metabolismo , Anemia/etiologia , Anemia/metabolismo , Eritropoese/fisiologia , Macrófagos/metabolismo
4.
Res Vet Sci ; 169: 105164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324973

RESUMO

Mediterranean area represents the main habitat of Testudo hermanni. Clinical signs of disease of these tortoises are non-specific, making the hematology results crucial in revealing underlying pathological conditions. However, accurate automated identification of blood cell populations is hampered by the presence of nucleated erythrocytes (NRBC) and thrombocytes (Thr), necessitating manual methods such as counting chambers. The aim of the study was to assess the performance of the novel automated hematology analyzer Sysmex XN-1000 V, which includes a a specific channel (WNR) for counting NRBC, in accurately identify and quantify the different blood cell populations of Testudo hermanni. Additionally, its agreement with manual counts was evaluated. Fifty heparinized blood samples were initially counted using the Neubauer improved chamber and then analysed twice with Sysmex XN-1000 V. Thirteen out of 50 samples were instrumentally counted again after 48 h to assess the inter-assay precision. All WNR scattergrams were re-analysed using an ad hoc gate panel to differentiate two populations: NRBCs (weak fluorescence signal) and WBC + Thr (high fluorescence signal). Sysmex XN-1000 V demonstrated optimal intra- and inter-assay precision for NRBCs (CV 0.98% ± 1.96; 1.31% ± 2.98) and moderate precision for WBC + Thr (CV 9.24% ± 16.61; 12.69% ± 10.35). No proportional nor constant errors were observed between the methods for both the populations. The instrumental NRBC counts were consistently slightly lower, while WBC + Thr counts were slightly higher compared to manual counts. These findings suggest that Sysmex XN-1000 V can be used for analyzing cell populations in heparinized blood of Testudo hermanni. However, specific instrumental reference intervals are suggested.


Assuntos
Hematologia , Tartarugas , Animais , Leucócitos , Eritroblastos , Contagem de Células/veterinária , Reprodutibilidade dos Testes , Contagem de Leucócitos/veterinária , Contagem de Células Sanguíneas/veterinária
5.
Blood Adv ; 8(6): 1449-1463, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290102

RESUMO

ABSTRACT: During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Eritropoese/genética , Eritrócitos , Diferenciação Celular/genética , Eritroblastos/metabolismo
6.
Int J Hematol ; 119(2): 210-214, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127226

RESUMO

Congenital dyserythropoietic anemia type II (CDA II) refers to a group of extremely rare heterozygous disorders characterized by ineffective erythropoiesis and morphological abnormalities of erythrocytes and bone marrow erythroblasts. Six types of CDA with differing heterogenous genetic mutations have been identified to date. Due to the genetic and clinical heterogeneity of CDA, accurate diagnosis can be very challenging, especially with the clinical overlap observed between CDA and other dyserythropoietic diseases. A 1-month-old infant girl, born to a non-consanguineous family, presented with severe normocytic anemia that required transfusions every 2 to 3 weeks since birth, as well as jaundice. Whole exome sequencing revealed a novel compound heterozygosity in the SEC23B gene, thus establishing the diagnosis of CDA II. Analysis by multiple bioinformatics tools predicted that the mutant proteins were deleterious. Here, we report a novel variation in SEC23B that extends the mutation spectrum of SEC23B in the diagnosis of CDA II.


Assuntos
Anemia Diseritropoética Congênita , Lactente , Recém-Nascido , Feminino , Humanos , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Mutação , Heterozigoto , Eritroblastos/metabolismo , Proteínas de Transporte Vesicular/genética
7.
Nat Commun ; 14(1): 7542, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985773

RESUMO

Circulating cell-free DNA (cfDNA) fragments are a biological analyte with extensive utility in diagnostic medicine. Understanding the source of cfDNA and mechanisms of release is crucial for designing and interpreting cfDNA-based liquid biopsy assays. Using cell type-specific methylation markers as well as genome-wide methylation analysis, we determine that megakaryocytes, the precursors of anuclear platelets, are major contributors to cfDNA (~26%), while erythroblasts contribute 1-4% of cfDNA in healthy individuals. Surprisingly, we discover that platelets contain genomic DNA fragments originating in megakaryocytes, contrary to the general understanding that platelets lack genomic DNA. Megakaryocyte-derived cfDNA is increased in pathologies involving increased platelet production (Essential Thrombocythemia, Idiopathic Thrombocytopenic Purpura) and decreased upon reduced platelet production due to chemotherapy-induced bone marrow suppression. Similarly, erythroblast cfDNA is reflective of erythrocyte production and is elevated in patients with thalassemia. Megakaryocyte- and erythroblast-specific DNA methylation patterns can thus serve as biomarkers for pathologies involving increased or decreased thrombopoiesis and erythropoiesis, which can aid in determining the etiology of aberrant levels of erythrocytes and platelets.


Assuntos
Ácidos Nucleicos Livres , Megacariócitos , Humanos , Trombopoese , Eritropoese/genética , Ácidos Nucleicos Livres/genética , Plaquetas , Eritroblastos , DNA
8.
Cell Commun Signal ; 21(1): 332, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986081

RESUMO

Anemia is the most common manifestation in myelodysplastic syndrome (MDS) patients, but the cause of ineffective hematopoiesis is not fully understood. Enucleation is an important event in the maturation process of erythroblasts. According to a series of morphological phenotypes of the pathological development of MDS erythroblasts, we speculate that there may be enucleation disorders. To verify this hypothesis, we cultured MDS bone marrow CD34+ cells in vitro and induced erythroblast development. The results showed that erythroblast enucleation in MDS was significantly lower than that in the normal group, and the rate of enucleation was positively correlated with hemoglobin concentration. Risk stratification of MDS was performed to further analyze the differences in enucleation among the normal group, low-middle risk group and high-risk group. The results showed that the enucleation rate of the high risk group was higher than that of the low-middle risk group but still lower than that of the normal group. Moreover, the expression of pERK and pAKT in MDS erythroblasts in the high risk group was higher than that in the normal group, while the expression of pERK and pAKT in the low-middle risk group was lower than that in the normal group. Furthermore, the enucleation of MDS was positively correlated with the phosphorylation degree of ERK and AKT. In conclusion, this study reveals that the enucleation of erythroblasts is one of the possible causes of anemia in MDS. Video Abstract.


Assuntos
Anemia , Síndromes Mielodisplásicas , Humanos , Eritroblastos/metabolismo , Eritroblastos/patologia , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/metabolismo , Anemia/complicações , Anemia/metabolismo , Anemia/patologia , Fatores de Risco , Células da Medula Óssea/patologia
9.
Front Cell Infect Microbiol ; 13: 1264607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029254

RESUMO

Introduction: Sepsis is a vitally serious disease leading to high mortality. Nucleated red blood cells (NRBCs) are present in some noninfectious diseases, but the relationship between NRBCs and sepsis in children remains unknown. The purpose of this study was to compare the clinical characteristics and outcomes of sepsis with positive NRBCs and negative NRBCs in children, and to further explore whether the count of NRBCs has a relationship with the severity of sepsis. Methods: We enrolled children with sepsis who were admitted to the Children's Hospital of Chongqing Medical University between January 2020 and December 2022. The children's clinical data, laboratory data and outcomes were recorded and analyzed. Results: One hundred and fifteen children met the inclusion criteria in our study. Compared to negative NRBCs patients, the C-reactive protein, alanine transaminase, urea nitrogen values, mortality rate and length of hospitalization were found to be significantly increased, while platelet counts, and hemoglobin were significantly decreased in sepsis patients with positive NRBC (P < 0.05). Receiver operating characteristic (ROC) curves analysis showed that the optimal cutoff value of the NRBC count in the diagnosis of severe sepsis was 3, with a sensitivity of 87.5% and specificity of 94.9%. The area under the ROC curve was 0.877 (95% CI: 0.798-0.957). Discussion: These findings demonstrated that NRBC count has the potential to be a biomarker for the diagnosis of sepsis in children, especially an NRBC count greater than 3, which may predict the severity and poor prognosis in children suffering from sepsis.


Assuntos
Eritroblastos , Sepse , Humanos , Criança , Biomarcadores , Proteína C-Reativa , Hospitalização , Sepse/diagnóstico
11.
Toxicol Lett ; 387: 28-34, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739093

RESUMO

Epidemiological and experimental studies have demonstrated the association of spontaneous abortion or embryonic atrophy with heavy metals, including some well-known anemia inducers, such as cadmium (Cd). However, the direct adverse effect of Cd on embryos without inducing maternal anemia remains unclear. In this study, we treated mice with a low dose of Cd before and after mating to minimize Cd-induced maternal anemia. Although most embryos developed normally, embryonic atrophy was still observed in a small percentage of embryos from Cd-exposed pregnant mice. Compared to the embryos from the control pregnant mice, a complete blockage of erythroid differentiation was observed in the atrophic embryos but no obvious alteration of erythroid differentiation in the non-atrophic embryos, respectively. Moreover, our results suggested delayed enucleation of erythroblasts in these non-atrophic embryos. Mechanically, the inhibited iron transport from the placenta to the fetus together with the increased iron export in the fetal livers might contribute to embryonic atrophy and delayed enucleation of erythroblasts upon Cd exposure. Our data may provide new insights into the embryonic toxicity of low-dose Cd.


Assuntos
Anemia , Cádmio , Gravidez , Feminino , Camundongos , Animais , Cádmio/toxicidade , Eritropoese , Eritroblastos , Ferro , Atrofia
12.
Int J Lab Hematol ; 45(6): 860-868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575073

RESUMO

INTRODUCTION: To compare the morphological classification ability of peripheral-blood leukocytes of the automatic cell morphology analyzers MC-100i and DI-60. METHODS: (1) MC-100i and DI-60 were used to analyze leukocytes in 432 venous blood samples collected from three tertiary hospitals across China. The preclassification results were compared with the results reported by senior morphological experts (postclassification results) to evaluate the accuracy, sensitivity, specificity, and consistency of leukocyte preclassification for both instruments. (2) In 200 of the 432 blood samples, morphological experts conducted manual microscopic examination for various types of leukocytes. The correlation between the MC-100i and DI-60 leukocyte postclassification results and the expert microscopist results were analyzed. RESULTS: (1) MC-100i preclassified leukocytes and nucleated red blood cells (RBCs). Compared with the postclassification results, the total leukocyte preclassification accuracy of MC-100i was 97.16%, while that of DI-60 was 87.24%. The sensitivity of MC-100i to abnormal cells (including blasts, promyelocytes, neutrophilic myelocytes, neutrophilic metamyelocytes, reactive lymphocytes, abnormal promyelocytes, plasma cells, abnormal lymphocytes and nucleated RBCs) was 90.24%, which was significantly higher than the 50.72% sensitivity of DI-60. (2) Comparing the postclassification results with manual microscopy, except for reactive lymphocytes and basophils, the MC-100i and DI-60 results had good correlations with various leukocyte types and nucleated RBCs (r > 0.85), and MC-100i was better than DI-60 in the recognition of basophils. CONCLUSION: Both MC-100i and DI-60 have good detection ability for five normal types of leukocytes in peripheral blood. MC-100i has significantly better detection sensitivity for abnormal cells in peripheral blood than DI-60.


Assuntos
Eritroblastos , Leucócitos , Humanos , Contagem de Leucócitos , Basófilos , Plasmócitos
13.
Sci Rep ; 13(1): 12864, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553354

RESUMO

Transcriptional changes in compensatory erythropoiesis in sickle cell anemia (SCA) and their disease modulation are unclear. We detected 1226 differentially expressed genes in hemoglobin SS reticulocytes compared to non-anemic hemoglobin AA controls. Assessing developmental expression changes in hemoglobin AA erythroblasts for these genes suggests heightened terminal differentiation in early erythroblasts in SCA that diminishes toward the polychromatic to orthochromatic stage transition. Comparison of reticulocyte gene expression changes in SCA with that in Chuvash erythrocytosis, a non-anemic disorder of increased erythropoiesis due to constitutive activation of hypoxia inducible factors, identified 453 SCA-specific changes attributable to compensatory erythropoiesis. Peripheral blood mononuclear cells (PBMCs) in SCA contain elevated proportions of erythroid progenitors due to heightened erythropoiesis. Deconvolution analysis in PBMCs from 131 SCA patients detected 54 genes whose erythroid expression correlated with erythropoiesis efficiency, which were enriched with SCA-specific changes (OR = 2.9, P = 0.00063) and annotation keyword "ubiquitin-dependent protein catabolic process", "protein ubiquitination", and "protein polyubiquitination" (OR = 4.2, P = 7.5 × 10-5). An erythroid expression quantitative trait locus of one of these genes, LNX2 encoding an E3 ubiquitin ligase, associated with severe pain episodes in 774 SCA patients (OR = 1.7, P = 3.9 × 10-5). Thus, erythroid gene transcription responds to unique conditions within SCA erythroblasts and these changes potentially correspond to vaso-occlusive manifestations.


Assuntos
Anemia Falciforme , Reticulócitos , Humanos , Reticulócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Eritroblastos/metabolismo , Eritropoese/genética , Expressão Gênica
14.
Front Immunol ; 14: 1202943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545522

RESUMO

Recent studies have demonstrated that a particular group of nucleated cells that exhibit erythroid markers (TER119 in mice and CD235a in humans) possess the ability to suppress the immune system and promote tumor growth. These cells are known as CD45+ erythroid progenitor cells (EPCs). According to our study, it appears that a subset of these CD45+ EPCs originate from B lymphocytes. Under conditions of hypoxia, mouse B lymphoma cells are capable of converting to erythroblast-like cells, which display phenotypes of CD45+TER119+ cells, including immunosuppressive effects on CD8 T cells. Furthermore, non-neoplastic B cells have similar differentiation abilities and exert the same immunosuppressive effect under anemia or tumor conditions in mice. Similar B cells exist in neonatal mice, which provides an explanation for the potential origin of immunosuppressive erythroid cells in newborns. Additionally, CD19+CD235a+ double-positive cells can be identified in the peripheral blood of patients with chronic lymphocytic leukemia. These findings indicate that some CD45+ EPCs are transdifferentiated from a selective population of CD19+ B lymphocytes in response to environmental stresses, highlighting the plasticity of B lymphocytes. We anticipate a potential therapeutic implication, in that targeting a specific set of B cells instead of erythroid cells should be expected to restore adaptive immunity and delay cancer progression.


Assuntos
Anemia , Eritroblastos , Humanos , Recém-Nascido , Animais , Camundongos , Eritroblastos/patologia , Células Precursoras Eritroides , Diferenciação Celular , Linfócitos B/patologia
15.
Blood Adv ; 7(18): 5496-5509, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493969

RESUMO

During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. Although it has been observed that Plasmodium falciparum infection in late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA sequencing after fluorescence-activated cell sorting of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P falciparum. Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared with that in uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Although some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia.


Assuntos
Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Eritroblastos/metabolismo , Malária Falciparum/metabolismo , Eritropoese
16.
Cells ; 12(14)2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37508482

RESUMO

Nucleated red blood cells (NRBCs) are premature erythrocyte precursors that reside in the bone marrow of humans of all ages as an element of erythropoiesis. They rarely present in healthy adults' circulatory systems but can be found circulating in fetuses and neonates. An NRBC count is a cost-effective laboratory test that is currently rarely used in everyday clinical practice; it is mostly used in the diagnosis of hematological diseases/disorders relating to erythropoiesis, anemia, or hemolysis. However, according to several studies, it may be used as a biomarker in the diagnosis and clinical outcome prognosis of preterm infants or severely ill adult patients. This would allow for a quick diagnosis of life-threatening conditions and the prediction of a possible change in a patient's condition, especially in relation to patients in the intensive care unit. In this review, we sought to summarize the possible use of NRBCs as a prognostic marker in various disease entities. Research into the evaluation of the NRBCs in the pediatric population most often concerns neonatal hypoxia, the occurrence and consequences of asphyxia, and overall neonatal mortality. Among adults, NRBCs can be used to predict changes in clinical condition and mortality in critically ill patients, including those with sepsis, trauma, ARDS, acute pancreatitis, or severe cardiovascular disease.


Assuntos
Pancreatite , Adulto , Humanos , Recém-Nascido , Criança , Prognóstico , Doença Aguda , Recém-Nascido Prematuro , Eritroblastos
17.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37298665

RESUMO

Red blood cells (RBC) are the most abundant cells in mammals [...].


Assuntos
Eritroblastos , Eritrócitos , Animais , Linhagem da Célula , Mamíferos
18.
Int J Lab Hematol ; 45(4): 411-412, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37138468

Assuntos
Eritroblastos , Humanos
20.
Cells ; 12(9)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37174702

RESUMO

Erythropoiesis is a highly regulated process and undergoes several genotypic and phenotypic changes during differentiation. The phenotypic changes can be evaluated using a combination of cell surface markers expressed at different cellular stages of erythropoiesis using FACS. However, limited studies are available on the in-depth phenotypic characterization of progenitors from human adult hematopoietic stem and progenitor cells (HSPCs) to red blood cells. Therefore, using a set of designed marker panels, in the current study we have kinetically characterized the hematopoietic, erythroid progenitors, and terminally differentiated erythroblasts ex vivo. Furthermore, the progenitor stages were explored for expression of CD117, CD31, CD41a, CD133, and CD45, along with known key markers CD36, CD71, CD105, and GPA. Additionally, we used these marker panels to study the stage-specific phenotypic changes regulated by the epigenetic regulator; Nuclear receptor binding SET Domain protein 1 (NSD1) during erythropoiesis and to study ineffective erythropoiesis in myelodysplastic syndrome (MDS) and pure red cell aplasia (PRCA) patients. Our immunophenotyping strategy can be used to sort and study erythroid-primed hematopoietic and erythroid precursors at specified time points and to study diseases resulting from erythroid dyspoiesis. Overall, the current study explores the in-depth kinetics of phenotypic changes occurring during human erythropoiesis and applies this strategy to study normal and defective erythropoiesis.


Assuntos
Células Precursoras Eritroides , Eritropoese , Adulto , Humanos , Células Precursoras Eritroides/metabolismo , Imunofenotipagem , Eritroblastos/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...