Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.873
Filtrar
1.
Eur J Pharmacol ; 971: 176548, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570080

RESUMO

OBJECTIVES: Thrombocytopenia is a disease in which the number of platelets in the peripheral blood decreases. It can be caused by multiple genetic factors, and numerous challenges are associated with its treatment. In this study, the effects of alnustone on megakaryocytes and platelets were investigated, with the aim of developing a new therapeutic approach for thrombocytopenia. METHODS: Random forest algorithm was used to establish a drug screening model, and alnustone was identified as a natural active compound that could promote megakaryocyte differentiation. The effect of alnustone on megakaryocyte activity was determined using cell counting kit-8. The effect of alnustone on megakaryocyte differentiation was determined using flow cytometry, Giemsa staining, and phalloidin staining. A mouse model of thrombocytopenia was established by exposing mice to X-rays at 4 Gy and was used to test the bioactivity of alnustone in vivo. The effect of alnustone on platelet production was determined using zebrafish. Network pharmacology was used to predict targets and signaling pathways. Western blotting and immunofluorescence staining determined the expression levels of proteins. RESULTS: Alnustone promoted the differentiation and maturation of megakaryocytes in vitro and restored platelet production in thrombocytopenic mice and zebrafish. Network pharmacology and western blotting showed that alnustone promoted the expression of interleukin-17A and enhanced its interaction with its receptor, and thereby regulated downstream MEK/ERK signaling and promoted megakaryocyte differentiation. CONCLUSIONS: Alnustone can promote megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway and thus provides a new therapeutic strategy for the treatment of thrombocytopenia.


Assuntos
Megacariócitos , Trombocitopenia , Camundongos , Animais , Megacariócitos/metabolismo , Peixe-Zebra/metabolismo , Interleucina-17/metabolismo , Plaquetas , Trombocitopenia/tratamento farmacológico , Trombocitopenia/metabolismo , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia
2.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573820

RESUMO

Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.


Assuntos
Trombocitopenia , Cloridrato de Vilazodona , Camundongos , Animais , Cloridrato de Vilazodona/efeitos adversos , Cloridrato de Vilazodona/metabolismo , Peixe-Zebra , Receptor 5-HT1A de Serotonina/metabolismo , Plaquetas/metabolismo , Trombocitopenia/tratamento farmacológico , Trombocitopenia/metabolismo , Megacariócitos/metabolismo , Trombopoese
3.
Methods Mol Biol ; 2774: 279-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441772

RESUMO

The in vitro differentiation of pluripotent stem cells into desired lineages enables mechanistic studies of cell transitions into more mature states that can provide insights into the design principles governing cell fate control. We are interested in reprogramming pluripotent stem cells with synthetic gene circuits to drive mouse embryonic stem cells (mESCs) down the hematopoietic lineage for the production of megakaryocytes, the progenitor cells for platelets. Here, we describe the methodology for growing and differentiating mESCs, in addition to inserting a transgene to observe its expression throughout differentiation. This entails four key methods: (1) growing and preparing mouse embryonic fibroblasts for supporting mESC growth and expansion, (2) growing and preparing OP9 feeder cells to support the differentiation of mESCs, (3) the differentiation of mESCs into megakaryocytes, and (4) utilizing an integrase-mediated docking site to insert transgenes for their stable integration and expression throughout differentiation. Altogether, this approach demonstrates a streamline differentiation protocol that emphasizes the reprogramming potential of mESCs that can be used for future mechanistic and therapeutic studies of controlling cell fate outcomes.


Assuntos
Megacariócitos , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Fibroblastos , Plaquetas , Diferenciação Celular/genética
4.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548886

RESUMO

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Assuntos
Hematopoese , Megacariócitos , Humanos , Megacariócitos/metabolismo , Diferenciação Celular/genética , Hematopoese/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo
5.
Stem Cell Reports ; 19(4): 486-500, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38458190

RESUMO

Maintenance of hematopoietic stem cell (HSC) function in the niche is an orchestrated event. Osteomacs (OM) are key cellular components of the niche. Previously, we documented that osteoblasts, OM, and megakaryocytes interact to promote hematopoiesis. Here, we further characterize OM and identify megakaryocyte-induced mediators that augment the role of OM in the niche. Single-cell mRNA-seq, mass spectrometry, and CyTOF examination of megakaryocyte-stimulated OM suggested that upregulation of CD166 and Embigin on OM augment their hematopoiesis maintenance function. CD166 knockout OM or shRNA-Embigin knockdown OM confirmed that the loss of these molecules significantly reduced the ability of OM to augment the osteoblast-mediated hematopoietic-enhancing activity. Recombinant CD166 and Embigin partially substituted for OM function, characterizing both proteins as critical mediators of OM hematopoietic function. Our data identify Embigin and CD166 as OM-regulated critical components of HSC function in the niche and potential participants in various in vitro manipulations of stem cells.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Humanos , Camundongos , Megacariócitos/metabolismo , Regulação para Cima , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Osteoblastos/metabolismo , Nicho de Células-Tronco/fisiologia
6.
Immunity ; 57(3): 478-494.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447571

RESUMO

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.


Assuntos
Megacariócitos , Trombopoese , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , Plaquetas
7.
Nat Commun ; 15(1): 2588, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519457

RESUMO

We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Megacariócitos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plaquetas/metabolismo , Trombopoese/genética , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
9.
Blood ; 143(6): 481-482, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329778

Assuntos
Megacariócitos
10.
Blood Adv ; 8(7): 1699-1714, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330198

RESUMO

ABSTRACT: Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germ line RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMMs), is associated with thrombocytopenia, platelet dysfunction, and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen, and immunoglobulin G (IgG) were decreased in a patient with FPDMM. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen, and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, small interfering RNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared with control cells, with increases in caveolin-1 and flotillin-1 (2 independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes), and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 KD resulted in increased colocalization of albumin with flotillin and fibrinogen with RAB11, suggesting altered trafficking of both proteins. The increased uptake of albumin and fibrinogen, as well as levels of caveolin-1, flotillin-1, LAMP2, and IFITM3, were recapitulated by short hairpin RNA RUNX1 KD in CD34+-derived MK. To our knowledge, these studies provide first evidence that platelet endocytosis of albumin and fibrinogen is impaired in some patients with RUNX1-haplodeficiency and suggest that megakaryocytes have enhanced endocytosis with defective trafficking, leading to loss of these proteins by distinct mechanisms. This study provides new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1-haplodeficiency.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Transtornos Plaquetários , Hemostáticos , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda , Humanos , Megacariócitos/metabolismo , Caveolina 1/metabolismo , Fibrinogênio/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Endocitose , Albuminas/metabolismo , Imunoglobulina G , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
Platelets ; 35(1): 2304173, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38303515

RESUMO

Transcription factor 3 (TCF3) is a DNA transcription factor that modulates megakaryocyte development. Although abnormal TCF3 expression has been identified in a range of hematological malignancies, to date, it has not been investigated in myelofibrosis (MF). MF is a Philadelphia-negative myeloproliferative neoplasm (MPN) that can arise de novo or progress from essential thrombocythemia [ET] and polycythemia vera [PV] and where dysfunctional megakaryocytes have a role in driving the fibrotic progression. We aimed to examine whether TCF3 is dysregulated in megakaryocytes in MPN, and specifically in MF. We first assessed TCF3 protein expression in megakaryocytes using an immunohistochemical approach analyses and showed that TCF3 was reduced in MF compared with ET and PV. Further, the TCF3-negative megakaryocytes were primarily located near trabecular bone and had the typical "MF-like" morphology as described by the WHO. Genomic analysis of isolated megakaryocytes showed three mutations, all predicted to result in a loss of function, in patients with MF; none were seen in megakaryocytes isolated from ET or PV marrow samples. We then progressed to transcriptomic sequencing of platelets which showed loss of TCF3 in MF. These proteomic, genomic and transcriptomic analyses appear to indicate that TCF3 is downregulated in megakaryocytes in MF. This infers aberrations in megakaryopoiesis occur in this progressive phase of MPN. Further exploration of this pathway could provide insights into TCF3 and the evolution of fibrosis and potentially lead to new preventative therapeutic targets.


What is the context? We investigated TCF3 (transcription factor 3), a gene that regulates megakaryocyte development, for genomic and proteomic changes in myelofibrosis.Myelofibrosis is the aggressive phase of a group of blood cancers called myeloproliferative neoplasms, and abnormalities in development and maturation of megakaryocytes is thought to drive the development of myelofibrosis.What is new? We report detection of three novel TCF3 mutations in megakaryocytes and decreases in TCF3 protein and gene expression in primary megakaryocytes and platelets from patients with myelofibrosis.This is the first association between loss of TCF3 in megakaryocytes from patients and myelofibrosis.What is the impact? TCF3 dysregulation may be a novel mechanism that is responsible for the development of myelofibrosis and better understanding of this pathway could identify new drug targets.


Assuntos
Megacariócitos , Mielofibrose Primária , Fator 3 de Transcrição , Humanos , Medula Óssea/patologia , Megacariócitos/metabolismo , Policitemia Vera/genética , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Proteômica , Trombocitemia Essencial/patologia , Fator 3 de Transcrição/metabolismo
13.
14.
Blood ; 143(4): 298-300, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270943
16.
Cell Metab ; 36(3): 541-556.e9, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232736

RESUMO

The roles of platelets/megakaryocytes (MKs), the key components in the blood system, in the tumor microenvironment and antitumor immunity are unclear. In patients with colorectal cancer, the number of platelets was significantly increased in patients with metastasis, and Erbin expression was highly expressed in platelets from patients with metastases. Moreover, Erbin knockout in platelets/MKs suppressed lung metastasis in mice and promoted aggregations of platelets. Mechanistically, Erbin-deficient platelets have increasing mitochondrial oxidative phosphorylation and secrete lipid metabolites like acyl-carnitine (Acar) by abolishing interaction with prothrombotic protein ESAM. Notably, Acar enhanced the activity of mitochondrial electron transport chain complex and mitochondrial oxidative phosphorylation in B cells by acetylation of H3K27 epigenetically. Targeting Erbin in platelets/MKs by a nanovesicle system dramatically attenuated lung metastasis in mice in vivo. Our study identifies an Erbin-mitochondria axis in platelets/MKs, which suppresses B cell-mediated antitumor immunity, suggesting a new way for the treatment of metastasis.


Assuntos
Neoplasias Pulmonares , Megacariócitos , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Neoplasias Pulmonares/metabolismo , Megacariócitos/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Microambiente Tumoral
17.
Adv Sci (Weinh) ; 11(12): e2305798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225757

RESUMO

Recent findings have shown that the level of interleukin-35 (IL-35) is abnormal in several autoimmune diseases. Nonetheless, whether IL-35 participates in the pathogenesis of immune thrombocytopenia (ITP) remains unclear. The current study investigates whether IL-35 modulates megakaryopoiesis. The results show that IL-35 receptors are progressively expressed on bone marrow megakaryocytes during the in vitro differentiation of CD34+ progenitors. IL-35 increases the number of megakaryocyte colony-forming units through the Akt pathway. The level of bone marrow IL-35 is reduced in ITP patients, and the decreased level of IL-35 may inhibit megakaryopoiesis. Then, the potential causes of decreased IL-35 in ITP patients are explored. The primary type of cell that secretes IL-35, known as IL-35-producing regulatory T cells (iTr35), is reduced in ITP patients. Bone marrow mesenchymal stem cells (MSCs) from ITP patients exhibit an impaired capability of inducing iTr35 due to enhanced apoptosis, which may contribute to the reduced level of bone marrow IL-35 in ITP patients. Iguratimod promotes megakaryocyte development and differentiation by elevating the expression of IL-35 receptors on megakaryocytes. Iguratimod improves response rates and reduces bleeding symptoms in corticosteroid-resistant ITP patients.


Assuntos
Cromonas , Púrpura Trombocitopênica Idiopática , Sulfonamidas , Humanos , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/metabolismo , Púrpura Trombocitopênica Idiopática/patologia , Megacariócitos , Medula Óssea/metabolismo , Interleucinas/metabolismo
19.
Am J Hematol ; 99(3): 336-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38165047

RESUMO

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.


Assuntos
Mielofibrose Primária , Trombocitemia Essencial , Humanos , Animais , Camundongos , Megacariócitos/metabolismo , Mielofibrose Primária/genética , Medula Óssea , Trombopoese/genética , Trombocitemia Essencial/metabolismo , Plaquetas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
20.
Viruses ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257782

RESUMO

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.


Assuntos
Megacariócitos , Fenóis , Reserpina , SARS-CoV-2 , Humanos , COVID-19 , Megacariócitos/virologia , Fenóis/farmacologia , Síndrome Pós-COVID-19 Aguda , Reserpina/análogos & derivados , Reserpina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...