Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.035
Filtrar
1.
Nature ; 633(8028): 198-206, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232148

RESUMO

Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.


Assuntos
Proteína BRCA1 , Linhagem da Célula , Transformação Celular Neoplásica , Glândulas Mamárias Animais , Mutação , Proteína Supressora de Tumor p53 , Animais , Camundongos , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem da Célula/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transformação Celular Neoplásica/genética , Células Clonais/metabolismo , Células Clonais/citologia , Carcinogênese/genética , Carcinogênese/patologia , Autorrenovação Celular/genética
2.
Stem Cell Reports ; 19(8): 1189-1204, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094562

RESUMO

It has been proposed that adult hematopoiesis is sustained by multipotent progenitors (MPPs) specified during embryogenesis. Adult-like hematopoietic stem cell (HSC) and MPP immunophenotypes are present in the fetus, but knowledge of their functional capacity is incomplete. We found that fetal MPP populations were functionally similar to adult cells, albeit with some differences in lymphoid output. Clonal assessment revealed that lineage biases arose from differences in patterns of single-/bi-lineage differentiation. Long-term (LT)- and short-term (ST)-HSC populations were distinguished from MPPs according to capacity for clonal multilineage differentiation. We discovered that a large cohort of long-term repopulating units (LT-RUs) resides within the ST-HSC population; a significant portion of these were labeled using Flt3-cre. This finding has two implications: (1) use of the CD150+ LT-HSC immunophenotype alone will significantly underestimate the size and diversity of the LT-RU pool and (2) LT-RUs in the ST-HSC population have the attributes required to persist into adulthood.


Assuntos
Linhagem da Célula , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Diferenciação Celular , Feto/citologia , Imunofenotipagem , Hematopoese , Células Clonais/citologia
3.
Stem Cell Res ; 80: 103524, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106599

RESUMO

We generated two human induced pluripotent cell (hiPSC) isogenic clones from an 11-year-old patient with 6q27 deletion syndrome. The heterozygous deletion encompasses approximately 240 kilobases, affecting 6 genes (promoter region of WDR27, coding regions of C6orf120, PHF10, DYNLT2, ERMARD, LINC00242). The patient suffered from epilepsy, psychosocial retardation, and a metabolic disorder. The patient also had a history of SHH-medulloblastoma as an infant. The generated hiPSCs represent a useful tool for modelling 6q27 deletion syndrome in vitro and understanding the molecular basis of the disorder.


Assuntos
Deleção Cromossômica , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Criança , Cromossomos Humanos Par 6/genética , Masculino , Células Clonais
4.
Genome Biol ; 25(1): 214, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123248

RESUMO

Analysis of clonal dynamics in human tissues is enabled by somatic genetic variation. Here, we show that analysis of mitochondrial mutations in single cells is dramatically improved in females when using X chromosome inactivation to select informative clonal mutations. Applying this strategy to human peripheral mononuclear blood cells reveals clonal structures within T cells that otherwise are blurred by non-informative mutations, including the separation of gamma-delta T cells, suggesting this approach can be used to decipher clonal dynamics of cells in human tissues.


Assuntos
Mutação , Análise de Célula Única , Inativação do Cromossomo X , Humanos , Feminino , Leucócitos Mononucleares/metabolismo , Cromossomos Humanos X/genética , Células Clonais , Linfócitos T/metabolismo , Masculino , DNA Mitocondrial/genética
5.
Cell Rep ; 43(8): 114555, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39083376

RESUMO

HIV controllers can control viral replication and remain healthy, but the mechanism behind this control is unknown. Despite human leukocyte antigen (HLA) diversity in the population, almost 50% of HIV controllers express the HLA-B∗57:01 molecule, which presents, among others, the Gag-derived epitope TW10. Given TW10's presentation in early infection, TW10-specific T cells could participate in the control of HIV. Here, we study the strength and functionality of TW10-specific T cells from HLA-B∗57:01+/HIV+ controller and non-controller individuals. We determine the TW10-specific T cell receptor (TCR) repertoire, revealing a bias in TCR gene usage with the presence of a public TCR. We determine that the T cell response is polyfunctional regardless of the viral load, despite the low affinity of TW10-specific TCRs. We solve the crystal structure of HLA-B∗57:01-TW10 in complex with a TCR, providing the basis of recognition that underpins the strong TRBV5 bias observed in TW10-specific clonotypes.


Assuntos
Infecções por HIV , Antígenos HLA-B , Carga Viral , Humanos , Antígenos HLA-B/imunologia , Antígenos HLA-B/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , HIV-1/imunologia , Masculino , Células Clonais
6.
Nature ; 632(8024): 419-428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020166

RESUMO

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Transformação Celular Neoplásica , Evolução Clonal , Células Clonais , Análise de Célula Única , Fatores de Necrose Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Evolução Clonal/genética , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Mutação , Invasividade Neoplásica/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Comunicação Autócrina , Análise de Sobrevida
7.
Phys Rev E ; 109(6-1): 064407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39021023

RESUMO

The self-organization of cells into complex tissues relies on a tight coordination of cell behavior. Identifying the cellular processes driving tissue growth is key to understanding the emergence of tissue forms and devising targeted therapies for aberrant growth, such as in cancer. Inferring the mode of tissue growth, whether it is driven by cells on the surface or by cells in the bulk, is possible in cell culture experiments but difficult in most tissues in living organisms (in vivo). Genetic tracing experiments, where a subset of cells is labeled with inheritable markers, have become important experimental tools to study cell fate in vivo. Here we show that the mode of tissue growth is reflected in the size distribution of the progeny of marked cells. To this end, we derive the clone size distributions using analytical calculations in the limit of negligible cell migration and cell death, and we test our predictions with an agent-based stochastic sampling technique. We show that for surface-driven growth the clone size distribution takes a characteristic power-law form with an exponent determined by fluctuations of the tissue surface. Our results propose a possible way of determining the mode of tissue growth from genetic tracing experiments.


Assuntos
Modelos Biológicos , Processos Estocásticos , Proliferação de Células , Células Clonais/citologia , Animais , Movimento Celular
8.
Nature ; 632(8023): 201-208, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020172

RESUMO

Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.


Assuntos
Competição entre as Células , Células Clonais , Células-Tronco , Telomerase , Animais , Masculino , Camundongos , Diferenciação Celular , Linhagem da Célula , Cromatina/metabolismo , Cromatina/genética , Células Clonais/citologia , Células Clonais/enzimologia , Células Clonais/metabolismo , Deleção de Genes , Genes myc , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Células-Tronco/metabolismo , Telomerase/deficiência , Telomerase/genética , Telomerase/metabolismo , Transcrição Reversa , Biocatálise , Homeostase , Envelhecimento
9.
Nucleic Acids Res ; 52(14): e62, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38922688

RESUMO

Genome-level clonal decomposition of a single specimen has been widely studied; however, it is mostly limited to cancer research. In this study, we developed a new algorithm CLEMENT, which conducts accurate decomposition and reconstruction of multiple subclones in genome sequencing of non-tumor (normal) samples. CLEMENT employs the Expectation-Maximization (EM) algorithm with optimization strategies specific to non-tumor subclones, including false variant call identification, non-disparate clone fuzzy clustering, and clonal allele fraction confinement. In the simulation and in vitro cell line mixture data, CLEMENT outperformed current cancer decomposition algorithms in estimating the number of clones (root-mean-square-error = 0.58-0.78 versus 1.43-3.34) and in the variant-clone membership agreement (∼85.5% versus 70.1-76.7%). Additional testing on human multi-clonal normal tissue sequencing confirmed the accurate identification of subclones that originated from different cell types. Clone-level analysis, including mutational burden and signatures, provided a new understanding of normal-tissue composition. We expect that CLEMENT will serve as a crucial tool in the currently emerging field of non-tumor genome analysis.


Assuntos
Algoritmos , Genômica , Humanos , Genômica/métodos , Neoplasias/genética , Mutação , Genoma Humano , Células Clonais
10.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
11.
Front Immunol ; 15: 1306490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873594

RESUMO

Recurrent exposures to a pathogenic antigen remodel the CD8+ T cell compartment and generate a functional memory repertoire that is polyclonal and complex. At the clonotype level, the response to the conserved influenza antigen, M158-66 has been well characterized in healthy individuals, but not in patients receiving immunosuppressive therapy or with aberrant immunity, such as those with juvenile idiopathic arthritis (JIA). Here we show that patients with JIA have a reduced number of M158-66 specific RS/RA clonotypes, indicating decreased clonal richness and, as a result, have lower repertoire diversity. By using a rank-frequency approach to analyze the distribution of the repertoire, we found several characteristics of the JIA T cell repertoire to be akin to repertoires seen in healthy adults, including an amplified RS/RA-specific antigen response, representing greater clonal unevenness. Unlike mature repertoires, however, there is more fluctuation in clonotype distribution, less clonotype stability, and more variable IFNy response of the M158-66 specific RS/RA clonotypes in JIA. This indicates that functional clonal expansion is altered in patients with JIA on immunosuppressive therapies. We propose that the response to the influenza M158-66 epitope described here is a general phenomenon for JIA patients receiving immunosuppressive therapy, and that the changes in clonal richness and unevenness indicate a retarded and uneven generation of a mature immune response.


Assuntos
Artrite Juvenil , Linfócitos T CD8-Positivos , Vacinas contra Influenza , Influenza Humana , Humanos , Artrite Juvenil/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Feminino , Criança , Masculino , Adolescente , Vacinação , Células Clonais/imunologia , Pré-Escolar , Memória Imunológica , Adulto Jovem
12.
Sci Rep ; 14(1): 14587, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918509

RESUMO

Engineered mammalian cells are key for biotechnology by enabling broad applications ranging from in vitro model systems to therapeutic biofactories. Engineered cell lines exist as a population containing sub-lineages of cell clones that exhibit substantial genetic and phenotypic heterogeneity. There is still a limited understanding of the source of this inter-clonal heterogeneity as well as its implications for biotechnological applications. Here, we developed a genomic barcoding strategy for a targeted integration (TI)-based CHO antibody producer cell line development process. This technology provided novel insights about clone diversity during stable cell line selection on pool level, enabled an imaging-independent monoclonality assessment after single cell cloning, and eventually improved hit-picking of antibody producer clones by monitoring of cellular lineages during the cell line development (CLD) process. Specifically, we observed that CHO producer pools generated by TI of two plasmids at a single genomic site displayed a low diversity (< 0.1% RMCE efficiency), which further depends on the expressed molecules, and underwent rapid population skewing towards dominant clones during routine cultivation. Clonal cell lines from one individual TI event demonstrated a significantly lower variance regarding production-relevant and phenotypic parameters as compared to cell lines from distinct TI events. This implies that the observed cellular diversity lies within pre-existing cell-intrinsic factors and that the majority of clonal variation did not develop during the CLD process, especially during single cell cloning. Using cellular barcodes as a proxy for cellular diversity, we improved our CLD screening workflow and enriched diversity of production-relevant parameters substantially. This work, by enabling clonal diversity monitoring and control, paves the way for an economically valuable and data-driven CLD process.


Assuntos
Células Clonais , Cricetulus , Código de Barras de DNA Taxonômico , Células CHO , Animais , Código de Barras de DNA Taxonômico/métodos , Genômica/métodos , Anticorpos Monoclonais/genética
13.
Immunol Cell Biol ; 102(7): 630-641, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38855806

RESUMO

CD8+ T cells recognizing their cognate antigen are typically recruited as a polyclonal population consisting of multiple clonotypes with varying T-cell receptor (TCR) affinity to the target peptide-major histocompatibility complex (pMHC) complex. Advances in single-cell sequencing have increased accessibility toward identifying TCRs with matched antigens. Here we present the discovery of a monoclonal CD8+ T-cell population with specificity for a hepatitis C virus (HCV)-derived human leukocyte antigen (HLA) class I epitope (HLA-B*07:02 GPRLGVRAT) which was isolated directly ex vivo from an individual with an episode of acutely resolved HCV infection. This population was absent before infection and underwent expansion and stable maintenance for at least 2 years after infection as measured by HLA-multimer staining. Furthermore, the monoclonal clonotype was characterized by an unusually long dissociation time (half-life = 794 s and koff = 5.73 × 10-4) for its target antigen when compared with previously published results. A comparison with related populations of HCV-specific populations derived from the same individual and a second individual suggested that high-affinity TCR-pMHC interactions may be inherent to epitope identity and shape the phenotype of responses which has implications for rational TCR selection and design in the age of personalized immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Células Clonais , Hepacivirus , Hepatite C , Receptores de Antígenos de Linfócitos T , Humanos , Linfócitos T CD8-Positivos/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Hepacivirus/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Epitopos de Linfócito T/imunologia
14.
Nat Immunol ; 25(5): 916-924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698238

RESUMO

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


Assuntos
Linfócitos B , Neoplasias da Mama , Vigilância Imunológica , Humanos , Feminino , Neoplasias da Mama/imunologia , Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos T/imunologia , Monitorização Imunológica , Sequenciamento do Exoma , Antígenos de Neoplasias/imunologia , Metástase Neoplásica , Células Clonais
15.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714853

RESUMO

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Assuntos
Linhagem da Célula , Células-Tronco Neurais , Organoides , Organoides/citologia , Organoides/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Células Clonais , Neurogênese/genética , Código de Barras de DNA Taxonômico , Animais
16.
J Pathol ; 263(3): 360-371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779852

RESUMO

Mutations are abundantly present in tissues of healthy individuals, including the breast epithelium. Yet it remains unknown whether mutant cells directly induce lesion formation or first spread, leading to a field of mutant cells that is predisposed towards lesion formation. To study the clonal and spatial relationships between morphologically normal breast epithelium adjacent to pre-cancerous lesions, we developed a three-dimensional (3D) imaging pipeline combined with spatially resolved genomics on archival, formalin-fixed breast tissue with the non-obligate breast cancer precursor ductal carcinoma in situ (DCIS). Using this 3D image-guided characterization method, we built high-resolution spatial maps of DNA copy number aberration (CNA) profiles within the DCIS lesion and the surrounding normal mammary ducts. We show that the local heterogeneity within a DCIS lesion is limited. However, by mapping the CNA profiles back onto the 3D reconstructed ductal subtree, we find that in eight out of 16 cases the healthy epithelium adjacent to the DCIS lesions has overlapping structural variations with the CNA profile of the DCIS. Together, our study indicates that pre-malignant breast transformations frequently develop within mutant clonal fields of morphologically normal-looking ducts. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Variações do Número de Cópias de DNA , Mutação , Humanos , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Imageamento Tridimensional , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Células Clonais
17.
Nature ; 629(8012): 679-687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693266

RESUMO

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Assuntos
Heterogeneidade Genética , Genômica , Imageamento Tridimensional , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Células Clonais/metabolismo , Células Clonais/patologia , Sequenciamento do Exoma , Aprendizado de Máquina , Mutação , Pâncreas/anatomia & histologia , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fluxo de Trabalho , Progressão da Doença , Detecção Precoce de Câncer , Oncogenes/genética
18.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716731

RESUMO

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/imunologia , Uganda , Adulto , Masculino , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/genética , Feminino , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Células Clonais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Adulto Jovem , Antígenos de Histocompatibilidade Classe I
19.
Nature ; 629(8014): 1149-1157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720070

RESUMO

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Assuntos
Cromatina , Epigênese Genética , Genótipo , Mutação , Análise de Célula Única , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética/genética , Epigenoma/genética , Genoma Mitocondrial/genética , Técnicas de Genotipagem , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Inflamação/genética , Inflamação/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , Proteínas de Membrana/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , RNA/genética , Células Clonais/metabolismo
20.
Br J Cancer ; 131(1): 196-204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750113

RESUMO

BACKGROUND: Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown promising results in cancer treatment, including breast cancer. However, clonal dynamics and clinical significance of TIL expansion ex vivo remain poorly understood. METHODS: We investigated T cell receptor (TCR) repertoire changes in expanded TILs from 19 patients with breast cancer. We compared TCR repertoire of TILs at different stages of expansion, including initial (2W TILs) and rapid expansion (REP TILs), and their overlap with formalin fixed paraffin embedded (FFPE) and peripheral blood. Additionally, we examined differences in TCR repertoire between CD4+ and CD8+ REP TILs. RESULTS: In descending order of proportion, average of 60% of the top 10% clonotypes of FFPE was retained in 2W TIL (60% in TRB, 64.7% in TRA). Among the overlapped clonotypes between 2W TILs and REP TILs, 69.9% was placed in top 30% of 2W TIL. The proportion of clonotypes in 2W TIL and REP TIL showed a significant positive correlation. CD4+ and CD8+ T cells show similar results in diversity and CDR3 length. CONCLUSIONS: Our study traces the changes in TILs repertoire from FFPE to 2W TIL and REP TIL and confirmed that clonotypes with high frequencies in TILs have a high likelihood of maintaining their priority throughout culture process.


Assuntos
Neoplasias da Mama , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Pessoa de Meia-Idade , Células Clonais/imunologia , Adulto , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA