Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 720
Filtrar
1.
Carbohydr Polym ; 334: 122024, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553223

RESUMO

Upon tensile stress, the spiral cellulose fibrils in wood cell walls rotate like springs with decreasing microfibril angle (MFA), and the cellulose molecules elongate in the chain direction. Compression wood with high MFA and opposite wood with low MFA were comparatively studied by in-situ tensile tests combined with synchrotron radiation WAXS in the present study. FTIR spectroscopy revealed that compression wood had a higher lignin content and fewer acetyl groups. For both types of wood, the lattice spacing d004 increased and the MFA decreased gradually with the increase of tensile stress. At stresses beyond the yield point, cellulose lattice strain depended linearly on macroscopic stress, while the MFA depended linearly on macroscopic strain. The deformation mechanisms of compression wood and opposite wood are not essentially different but differ in their deformation behavior. Specifically, the contribution ratio of lattice strain and cellulose fibril reorientation to macroscopic strain was 0.25 and 0.53 for compression wood, and 0.40 and 0.33 for opposite wood, respectively. Due to the geometric effects of MFA, a greater contribution of cellulose fibril reorientation to the macroscopic deformation was detected in compression wood than in opposite wood.


Assuntos
Celulose , Pinus , Celulose/química , Madeira/metabolismo , Microfibrilas/química , Lignina/metabolismo , Parede Celular/química
2.
Biomacromolecules ; 25(4): 2509-2519, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38514378

RESUMO

This study conducted a detailed evaluation of the feasibility of producing cellulose microfibrils (CMF) from a kraft-bleached hardwood pulp at high solid contents with and without pretreatments. CMFs produced by planetary ball milling at solid contents 17 and 28% were compared with those from 1 to 5% under the same milling conditions. Fiber pretreatments using a commercial endoglucanase and mechanical refining using a laboratory PFI mill were also applied before ball milling at a solid content of 28%. Two mechanisms of fiber fibrillation were identified from the results obtained: (i) ball and fiber/fibril interactions─the primary mechanism and (ii) interfiber/fibril frictional and tensional interactions─the secondary mechanism. The secondary mechanism plays an important role only in early-stage fibrillation and became less important as fibrillation proceeded in the later stage toward nanofibrillation. Improving fiber dispersion at lower solid content facilitated fibrillation. Endoglucanase pretreatment substantially shortened fibers to result in a "pulverized-like" CMF with short fibrils at an extended milling time. Mechanical refining of fibers facilitated fibrillation to result in CMFs with a morphology similar to that from runs without any fiber pretreatment but for a much shorter milling time. Both CMF water retention value (WRV) measurements and CMF suspension sedimentation experiments showed results consistent with imaging observations. The insights gained through this study provide relevant information with commercial significance regarding CMF production at high solids, which is not currently available in the literature.


Assuntos
Celulase , Microfibrilas , Carboidratos , Celulose
3.
Int J Biol Macromol ; 259(Pt 2): 129273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211922

RESUMO

In this paper, lignocellulosic fibers and cellulose microfibrils (CMFs) were extracted from palmyra fruit peduncle waste and investigated as naturally derived cellulosic materials for their potential use as reinforcement materials in composite applications. The physicochemical, mechanical, and thermal properties of the extracted fiber were studied. Physical and morphological analysis results revealed an extracted fiber diameter of 82.5 µm with a very rough surface, providing excellent interfacial bonding performance with the polymer matrix. Chemical, mechanical, and thermal results showed that the fibers consist mainly of cellulose as their crystallized phase, with a cellulose content of 56.5 wt% and a tensile strength of 693.3 MPa, along with thermal stability up to 252 °C. The chemically extracted CMFs exhibit a short, rough-surfaced, cylindrical cellulose structure with a diameter range of 10-15 µm. These CMFs demonstrate excellent thermal stability, withstanding temperatures up to 330 °C. Furthermore, the formation of CMFs is evident from a substantial increase in the crystallinity index, which increased from 58.2 % in the raw fibers to 78.2 % in the CMFs. FT-IR analysis further confirms the successful removal of non-cellulosic materials through chlorine-free chemical treatments. These findings strongly support the potential use of extracted fibers and CMFs as reinforcement materials in polymers.


Assuntos
Frutas , Microfibrilas , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química , Polímeros/análise
4.
Sci Rep ; 13(1): 22007, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086837

RESUMO

In plant cells, cellulose synthase complexes (CSCs) are nanoscale machines that synthesize and extrude crystalline cellulose microfibrils (CMFs) into the apoplast where CMFs are assembled with other matrix polymers into specific structures. We report the tissue-specific directionality of CSC movements of the xylem and interfascicular fiber walls of Arabidopsis stems, inferred from the polarity of CMFs determined using vibrational sum frequency generation spectroscopy. CMFs in xylems are deposited in an unidirectionally biased pattern with their alignment axes tilted about 25° off the stem axis, while interfascicular fibers are bidirectional and highly aligned along the longitudinal axis of the stem. These structures are compatible with the design of fiber-reinforced composites for tubular conduit and support pillar, respectively, suggesting that during cell development, CSC movement is regulated to produce wall structures optimized for cell-specific functions.


Assuntos
Arabidopsis , Arabidopsis/química , Microfibrilas/química , Celulose/química , Parede Celular/química
6.
Biomacromolecules ; 24(11): 4759-4770, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704189

RESUMO

Cellulose microfibrils (CMFs) are a major load-bearing component in plant cell walls. Thus, their structures have been studied extensively with spectroscopic and microscopic characterization methods, but the findings from these two approaches were inconsistent, which hampers the mechanistic understanding of cell wall mechanics. Here, we report the regiospecific assembly of CMFs in the periclinal wall of plant epidermal cells. Using sum frequency generation spectroscopic imaging, we found that CMFs are highly aligned in the cell edge region where two cells form a junction, whereas they are mostly isotropic on average throughout the wall thickness in the flat face region of the epidermal cell. This subcellular-level heterogeneity in the CMF alignment provided a new perspective on tissue-level anisotropy in the tensile modulus of cell wall materials. This finding also has resolved a previous contradiction between the spectroscopic and microscopic imaging studies, which paves a foundation for better understanding of the cell wall architecture, especially structure-geometry relationships.


Assuntos
Celulose , Células Vegetais , Celulose/química , Anisotropia , Microfibrilas/química , Parede Celular/química
7.
J Cell Mol Med ; 27(21): 3235-3246, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37635348

RESUMO

Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-ß1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-ß-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.


Assuntos
Microfibrilas , Fator de Crescimento Transformador beta , Animais , Camundongos , Tetracloreto de Carbono/toxicidade , Fibrilina-1/genética , Fibrilina-1/metabolismo , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Microfibrilas/metabolismo , Microfibrilas/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Plant Physiol ; 194(1): 8-14, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37403192

RESUMO

Environmental influences and differential growth subject plants to mechanical forces. Forces on the whole plant resolve into tensile forces on its primary cell walls and both tensile and compression forces on the secondary cell wall layers of woody tissues. Forces on cell walls are further resolved into forces on cellulose microfibrils and the noncellulosic polymers between them. Many external forces on plants oscillate, with time constants that vary from seconds to milliseconds. Sound waves are a high-frequency example. Forces on the cell wall lead to responses that direct the oriented deposition of cellulose microfibrils and the patterned expansion of the cell wall, leading to complex cell and tissue morphology. Recent experiments have established many of the details of which cell wall polymers associate with one another in both primary and secondary cell walls, but questions remain about which of the interconnections are load bearing, especially in primary cell walls. Direct cellulose-cellulose interactions appear to have a more important mechanical role than was previously thought, and some of the noncellulosic polymers may have a role in keeping microfibrils apart rather than cross-linking them as formerly envisaged.


Assuntos
Celulose , Plantas , Parede Celular , Microfibrilas
9.
Nat Plants ; 9(7): 1154-1168, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349550

RESUMO

Wood cellulose microfibril (CMF) is the most abundant organic substance on Earth but its nanostructure remains poorly understood. There are controversies regarding the glucan chain number (N) of CMFs during initial synthesis and whether they become fused afterward. Here, we combined small-angle X-ray scattering, solid-state nuclear magnetic resonance and X-ray diffraction analyses to resolve CMF nanostructures in native wood. We developed small-angle X-ray scattering measurement methods for the cross-section aspect ratio and area of the crystalline-ordered CMF core, which has a higher scattering length density than the semidisordered shell zone. The 1:1 aspect ratio suggested that CMFs remain mostly segregated, not fused. The area measurement reflected the chain number in the core zone (Ncore). To measure the ratio of ordered cellulose over total cellulose (Roc) by solid-state nuclear magnetic resonance, we developed a method termed global iterative fitting of T1ρ-edited decay (GIFTED), in addition to the conventional proton spin relaxation editing method. Using the formula N = Ncore/Roc, most wood CMFs were found to contain 24 glucan chains, conserved between gymnosperm and angiosperm trees. The average CMF has a crystalline-ordered core of ~2.2 nm diameter and a semidisordered shell of ~0.5 nm thickness. In naturally and artificially aged wood, we observed only CMF aggregation (contact without crystalline continuity) but not fusion (forming a conjoined crystalline unit). This further argued against the existence of partially fused CMFs in new wood, overturning the recently proposed 18-chain fusion hypothesis. Our findings are important for advancing wood structural knowledge and more efficient use of wood resources in sustainable bio-economies.


Assuntos
Microfibrilas , Madeira , Celulose/química , Espectroscopia de Ressonância Magnética , Sementes
10.
Oncogene ; 42(25): 2061-2073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156839

RESUMO

Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Microfibrilas/metabolismo , Microfibrilas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas/metabolismo , Imunoterapia , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Pancreáticas
11.
Sci Rep ; 13(1): 8728, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253753

RESUMO

Many factors regulate scar formation, which yields a modified extracellular matrix (ECM). Among ECM components, microfibril-associated proteins have been minimally explored in the context of skin wound repair. Microfibril-associated protein 5 (MFAP5), a small 25 kD serine and threonine rich microfibril-associated protein, influences microfibril function and modulates major extracellular signaling pathways. Though known to be associated with fibrosis and angiogenesis in certain pathologies, MFAP5's role in wound healing is unknown. Using a murine model of skin wound repair, we found that MFAP5 is significantly expressed during the proliferative and remodeling phases of healing. Analysis of existing single-cell RNA-sequencing data from mouse skin wounds identified two fibroblast subpopulations as the main expressors of MFAP5 during wound healing. Furthermore, neutralization of MFAP5 in healing mouse wounds decreased collagen deposition and refined angiogenesis without altering wound closure. In vitro, recombinant MFAP5 significantly enhanced dermal fibroblast migration, collagen contractility, and expression of pro-fibrotic genes. Additionally, TGF-ß1 increased MFAP5 expression and production in dermal fibroblasts. Our findings suggest that MFAP5 regulates fibroblast function and influences scar formation in healing wounds. Our work demonstrates a previously undescribed role for MFAP5 and suggests that microfibril-associated proteins may be significant modulators of wound healing outcomes and scarring.


Assuntos
Cicatriz , Proteínas Contráteis , Peptídeos e Proteínas de Sinalização Intercelular , Cicatrização , Animais , Camundongos , Cicatriz/patologia , Fibroblastos/metabolismo , Fibrose , Microfibrilas , Pele/metabolismo , Cicatrização/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Contráteis/metabolismo
12.
ACS Appl Bio Mater ; 6(5): 1849-1862, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076450

RESUMO

trans-1-(4'-Methoxyphenyl)-3-methoxy-4-phenyl 3-methoxyazetidin-2-one (or 3-methoxyazetidin-2-one) is one of the important ß-lactam derivatives with an ample range of bacterial activities yet few restrictions. To enhance the competency of the chosen 3-methoxyazetidin-2-one, microfibrils composed of copper oxide (CuO) and filter scraps of cigarette butts (CB) were chosen in the current work for developing a potential release formulation. The preparation of CuO-CB microfibrils required a simple reflux technique and a subsequent calcination treatment. The loading of 3-methoxyazetidin-2-one was processed via controlled magnetic stirring followed by centrifugation with microfibrils of CuO-CB. To confirm the loading efficiency, the 3-methoxyazetidin-2-one@CuO-CB complex was analyzed by scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy. Compared to the CuO nanoparticles, the release profile of CuO-CB microfibrils indicates only 32% of the drug release in the first 1 h at pH 7.4. As a model organism, E. coli has been utilized for in vitro drug release dynamic studies. Based on the observed drug release data, it was found that the prepared formulation evades premature drug release and triggers the on-demand release of drug inside bacterial cells. The controlled drug release by 3-methoxyazetidin-2-one@CuO-CB microfibrils over a period of 12 h further ascertained the excellent bactericide delivery mechanism to combat deadly bacterial resistance. Indeed, this study provides a strategy to combat antimicrobial resistance and eradicate bacterial disease via nanotherapeutics.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Escherichia coli , Preparações de Ação Retardada/farmacologia , Composição de Medicamentos , Microfibrilas , Antibacterianos/farmacologia , Antibacterianos/química
13.
Nat Struct Mol Biol ; 30(5): 608-618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081316

RESUMO

Genetic mutations in fibrillin microfibrils cause serious inherited diseases, such as Marfan syndrome and Weill-Marchesani syndrome (WMS). These diseases typically show major dysregulation of tissue development and growth, particularly in skeletal long bones, but links between the mutations and the diseases are unknown. Here we describe a detailed structural analysis of native fibrillin microfibrils from mammalian tissue by cryogenic electron microscopy. The major bead region showed pseudo eightfold symmetry where the amino and carboxy termini reside. On the basis of this structure, we show that a WMS deletion mutation leads to the induction of a structural rearrangement that blocks interaction with latent TGFß-binding protein-1 at a remote site. Separate deletion of this binding site resulted in the assembly of shorter fibrillin microfibrils with structural alterations. The integrin αvß3-binding site was also mapped onto the microfibril structure. These results establish that in complex extracellular assemblies, such as fibrillin microfibrils, mutations may have long-range structural consequences leading to the disruption of growth factor signaling and the development of disease.


Assuntos
Matriz Extracelular , Microfibrilas , Animais , Microfibrilas/metabolismo , Microfibrilas/patologia , Fibrilinas/genética , Fibrilinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Mutação , Sítios de Ligação , Mamíferos/metabolismo
14.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108724

RESUMO

Fibrillin-1 microfibrils are essential elements of the extracellular matrix serving as a scaffold for the deposition of elastin and endowing connective tissues with tensile strength and elasticity. Mutations in the fibrillin-1 gene (FBN1) are linked to Marfan syndrome (MFS), a systemic connective tissue disorder that, besides other heterogeneous symptoms, usually manifests in life-threatening aortic complications. The aortic involvement may be explained by a dysregulation of microfibrillar function and, conceivably, alterations in the microfibrils' supramolecular structure. Here, we present a nanoscale structural characterization of fibrillin-1 microfibrils isolated from two human aortic samples with different FBN1 gene mutations by using atomic force microscopy, and their comparison with microfibrillar assemblies purified from four non-MFS human aortic samples. Fibrillin-1 microfibrils displayed a characteristic "beads-on-a-string" appearance. The microfibrillar assemblies were investigated for bead geometry (height, length, and width), interbead region height, and periodicity. MFS fibrillin-1 microfibrils had a slightly higher mean bead height, but the bead length and width, as well as the interbead height, were significantly smaller in the MFS group. The mean periodicity varied around 50-52 nm among samples. The data suggest an overall thinner and presumably more frail structure for the MFS fibrillin-1 microfibrils, which may play a role in the development of MFS-related aortic symptomatology.


Assuntos
Síndrome de Marfan , Microfibrilas , Humanos , Fibrilina-1/genética , Fibrilinas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Síndrome de Marfan/genética , Aorta , Fibrilina-2
15.
Sci Rep ; 13(1): 4900, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966180

RESUMO

The molecular pathophysiology underlying lumbar spondylosis development remains unclear. To identify genetic factors associated with lumbar spondylosis, we conducted a genome-wide association study using 83 severe lumbar spondylosis cases and 182 healthy controls and identified 65 candidate disease-associated single nucleotide polymorphisms (SNPs). Replication analysis in 510 case and 911 control subjects from five independent Japanese cohorts identified rs2054564, located in intron 7 of ADAMTS17, as a disease-associated SNP with a genome-wide significance threshold (P = 1.17 × 10-11, odds ratio = 1.92). This association was significant even after adjustment of age, sex, and body mass index (P = 7.52 × 10-11). A replication study in a Korean cohort, including 123 case and 319 control subjects, also verified the significant association of this SNP with severe lumbar spondylosis. Immunohistochemistry revealed that fibrillin-1 (FBN1) and ADAMTS17 were co-expressed in the annulus fibrosus of intervertebral discs (IVDs). ADAMTS17 overexpression in MG63 cells promoted extracellular microfibrils biogenesis, suggesting the potential role of ADAMTS17 in IVD function through interaction with fibrillin fibers. Finally, we provided evidence of FBN1 involvement in IVD function by showing that lumbar IVDs in patients with Marfan syndrome, caused by heterozygous FBN1 gene mutation, were significantly more degenerated. We identified a common SNP variant, located in ADAMTS17, associated with susceptibility to lumbar spondylosis and demonstrated the potential role of the ADAMTS17-fibrillin network in IVDs in lumbar spondylosis development.


Assuntos
Disco Intervertebral , Osteoartrite da Coluna Vertebral , Espondilose , Humanos , Fibrilina-1 , Fibrilinas/análise , Estudo de Associação Genômica Ampla , Disco Intervertebral/química , Microfibrilas , Espondilose/genética
16.
J Mol Graph Model ; 118: 108336, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182825

RESUMO

Graphene-cellulose interactions have considerable potential in the development of new materials. In previous computational work (Biomacromolecules2016, 16, 1771), we predicted that the model 100 hydrophobic surface of cellulose interacted favourably with pristine graphene in aqueous solution molecular dynamics simulations; conversely, a model of the hydrophilic 010 surface of cellulose exhibited progressive rearrangement to present a more hydrophobic face with the graphene, with weakened hydrogen bonds between cellulose chains and partial permeation of water. Here, we extend this work by simulating the interaction in aqueous solution of the amphiphilic 110 surface of a cellulose Iß microfibril model, comprising 36 chains of 40 glucosyl residues, with an infinite sheet of pristine graphene. This face of the microfibril is of intermediate hydrophilicity and progressively associates with graphene over replicate simulations. As cellulose chains adhere to the graphene surface, forming interactions via its CH and OH groups, we observe a degree of local and global untwisting of the microfibril. Complementary rippling of the graphene surface is also observed, as it adapts to interaction with the microfibril. This adsorption process is accompanied by increased exclusion of water between cellulose and graphene although some water localises between chains at the immediate interface. The predicted propensity of a cellulose microfibril to adsorb spontaneously on the graphene surface, with mutual structural accommodation, highlights the amphiphilic nature of cellulose and the types of interactions that can be harnessed to design new graphene-carbohydrate biopolymer materials.


Assuntos
Grafite , Água , Água/química , Microfibrilas , Celulose/química , Simulação de Dinâmica Molecular
17.
Cancer Med ; 12(7): 8403-8414, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583532

RESUMO

BACKGROUND: Distant metastasis is the main cause of mortality in colorectal cancer (CRC) patients. N1-methyladenosine (m1A) is a type of epitranscriptome modification. While its regulatory effect on mRNA and its role in CRC metastasis remain unclear. METHODS: The m1A methylation profile of mRNAs in CRC was revealed by m1A methylated RNA immunoprecipitation sequencing. The expression of MFAP2 in tumor tissues was measured by immunohistochemistry and then correlated with the clinical characteristics and prognosis of CRC patients. The role of MFAP2 in the invasiveness of CRC cells was evaluated by transwell assays and peritoneal metastatic model in nude mice. The downstream targets of MFAP2 was screened by mass spectrometry analysis. Then the role of MFAP2-CLK3 signaling axis was verified by cotransfecting MFAP2 siRNA and CLK3 plasmid in CRC cells. RESULTS: Microfibril associated protein 2 (MFAP2) mRNA was overexpressed and m1A-hypermethylated in CRC. High expression of MFAP2 was closely related to lymph node metastasis and distant metastasis, leading to poor prognosis in patients with CRC. In vivo and in vitro studies showed that silencing of MFAP2 inhibited the migration, invasion and metastasis of CRC cells. CDC Like Kinase 3 (CLK3) was a potential downstream target of MFAP2. Further studies showed that MFAP2 depletion might induce autophagic degradation of CLK3, and the role of MFAP2 in the invasiveness of CRC cells was dependent on CLK3. CONCLUSIONS: Our results uncover a newly identified MFAP2-CLK3 signaling axis, which is a potential therapeutic target for CRC metastasis.


Assuntos
Neoplasias Colorretais , Microfibrilas , Animais , Camundongos , Linhagem Celular Tumoral , Metilação , Camundongos Nus , Microfibrilas/metabolismo , Microfibrilas/patologia , Neoplasias Colorretais/patologia , Proteínas/genética , Proliferação de Células , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
18.
Int J Biol Macromol ; 227: 815-826, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521716

RESUMO

Pickering emulsion is a promising strategy for the preparation of hydrophobic polymer composite using hydrophilic nanocellulose. Herein, two types of microfibril cellulose, pure mechanical pretreated microfibril cellulose (P-MFC) and Deep eutectic solvents pretreated microfibril cellulose (DES-MFC), were used to fabricate reinforced hydrophobic polystyrene (PS) composites (MFC/PS) with the aid of Pickering emulsion. The results showed that both oil/water ratio and the content as well as surface hydrophilicity of MFC were playing an important role in emulsifying capacity. 8 % MFC/PS emulsion showed the smallest and most uniform emulsion droplets which is similar to nanofibril cellulose (NFC)/PS at the oil/water ratio of 3:1. The mechanical performance of MFC/PS composites verified that the reinforcement effect was closely related to the emulsifying capacity of MFC. Specially, when the content of P-MFC was 8 wt%, the composite exhibited the best mechanical properties with the tensile strength of 44.7 ± 4.4 MPa and toughness of 1162 ± 52.8 kJ/m3 and Young's modulus of 13.5 ± 0.8 GPa, which was comparable to NFC/PS composite. Moreover, the effective enhancement role of P-MFC in hydrophobic polymethyl methacrylate and polycarbonate composites were also realized via Pickering emulsion strategy. Overall, this work constituted a proof of concept of the potential application of P-MFC in nano-reinforced hydrophobic composite.


Assuntos
Celulose , Polímeros , Polímeros/química , Celulose/química , Emulsões/química , Madeira , Microfibrilas , Interações Hidrofóbicas e Hidrofílicas , Poliestirenos
19.
ACS Biomater Sci Eng ; 9(1): 230-245, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484626

RESUMO

Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.


Assuntos
Osso e Ossos , Microfibrilas , Animais , Modelos Moleculares , Água , Minerais
20.
Hum Cell ; 36(2): 822-834, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527580

RESUMO

Tongue squamous cell carcinoma (TSCC) represents the most frequent malignancy of the oral cavity, characterized by a high metastasis rate and poor prognosis. Microfibril-associated protein 2 (MFAP2), as an extracellular matrix protein, has been found to drive tumor progression. The function and underlying mechanism of MFAP2 in TSCC remain unknown. The expression levels of MFAP2 were analyzed in tissue samples from 30 TSCC patients by real time-polymerase chain reaction and western blot assays. Our results revealed that the expression of MFAP2 mRNA and protein was upregulated in TSCC tissue samples compared with that in the matched para-carcinoma tissue samples. By performing in vitro gain-of-function or loss-of-function experiments and in vivo mouse xenograft experiments, we found that overexpression of MFAP2 induced proliferation and promoted transition from G1 to S phase of TSCC cells. Stronger invasive and migratory capabilities were observed in MFAP2-overexpressing TSCC cells. In contrast, knockdown of MFAP2 exhibited anti-proliferative, apoptosis-promoting and pro-migratory roles in TSCC cells. Knockdown of MFAP2 significantly inhibited xenograft tumor growth. Mechanistically, POU class 2 homeobox 1 (POU2F1) was recruited to the region of MFAP2 promoter and upregulates the expression of MFAP2. Silencing of MFAP2 effectively blocked the proliferation, migration, and invasion of TSCC cells caused by POU2F1 overexpression. Our results indicate that the role of MFAP2 in TSCC may attribute to transcriptional regulation of POU2F1.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/patologia , Genes Homeobox , Microfibrilas/metabolismo , Microfibrilas/patologia , Linhagem Celular Tumoral , Língua/metabolismo , Língua/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...