Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.710
Filtrar
1.
J Agric Food Chem ; 72(11): 5725-5733, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452362

RESUMO

The destructive agricultural pest oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), has been causing huge damage to the fruits and vegetable industry. Although many pertinent studies have been conducted on B. dorsalis, the functions of fat body still remain largely unknown. To this end, the comparative transcriptome analysis between fat body and carcass was performed in an attempt to provide insights into functions of fat body of B. dorsalis in the present study. A total of 1431 upregulated and 2511 downregulated unigenes were discovered in the fat body vs carcass comparison, respectively. The enrichment analysis of differentially expressed genes (DEG) revealed that most of the enriched pathways were related to metabolism. The reliability of DEG analysis was validated by qRT-PCR measurements of 12 genes in starch and sucrose metabolism pathway, including the trehalose-6-phosphate synthase (BdTPS) which was highly expressed in eggs, 5 d-old adults, and fat body. The RNAi of BdTPS significantly affected trehalose and chitin metabolism, larval growth, and larva-pupa metamorphosis. Collectively, the findings in this study enriched our understanding of fat body functions in metabolism and demonstrated the indispensable roles of BdTPS in trehalose-related physiological pathways.


Assuntos
Corpo Adiposo , Glucosiltransferases , Tephritidae , Animais , Reprodutibilidade dos Testes , Trealose/metabolismo , Perfilação da Expressão Gênica , Tephritidae/genética , Tephritidae/metabolismo , Transcriptoma
2.
Arch Insect Biochem Physiol ; 115(3): e22096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500448

RESUMO

The microbial community structure plays an important role in the internal environment of brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), which is an indispensable part to reflect the internal environment of BPH. Wing dimorphism is a strategy for balancing flight and reproduction of insects. Here, quantitative fluorescence PCR was used to analyse the number and changes of the symbionts in the fat body of long- and short-winged BPHs at different developmental stages. A metagenomic library was constructed based on the 16 S rRNA sequence and internal transcribed spacer sequence for high-throughput sequencing, to analyze the community structure and population number of the symbionts of long- and short-winged BPHs, and to make functional prediction. This study enriches the connotation of BPH symbionts, and laid a theoretical foundation for the subsequent study of BPH-symbionts interaction and the function of symbionts in the host.


Assuntos
Corpo Adiposo , Hemípteros , Animais , Hemípteros/genética
3.
Environ Pollut ; 348: 123783, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490525

RESUMO

The stingless bee Melipona scutellaris performs buzz pollination, effectively pollinating several wild plants and crops with economic relevance. However, most research has focused on honeybees, leaving a significant gap in studies concerning native species, particularly regarding the impacts of pesticide combinations on these pollinators. Thus, this study aimed to evaluate the sublethal effects of imidacloprid (IMD), pyraclostrobin (PYR), and glyphosate (GLY) on the behavior and fat body cell morphology and physiology of M. scutellaris. Foragers were orally exposed to the different pesticides alone and in combination for 48 h. Bees fed with contaminated solution walked less, moved slower, presented morphological changes in the fat body, including vacuolization, altered cell shape and nuclei morphology, and exhibited a higher count of altered oenocytes and trophocytes. In all exposed groups, alone and in combination, the number of cells expressing caspase-3 increased, but the TLR4 number of cells expressing decreased compared to the control groups. The intensity of HSP70 immunolabeling increased compared to the control groups. However, the intensity of the immunolabeling of HSP90 decreased in the IMD, GLY, and I + G (IMD + GLY) groups but increased in I + P-exposed bees (IMD + PYR). Alternatively, exposure to PYR and P + G (PYR + GLY) did not affect the immunolabeling intensity. Our findings demonstrate the hazardous effects and environmental consequences of isolated and combined pesticides on a vital neotropical pollinator. Understanding how pesticides impact the fat body can provide crucial insights into the overall health and survival of native bee populations, which can help develop more environmentally friendly approaches to agricultural practices.


Assuntos
60658 , Neonicotinoides , Nitrocompostos , Praguicidas , Estrobilurinas , Abelhas , Animais , Corpo Adiposo , Caminhada
4.
Insect Biochem Mol Biol ; 165: 104072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185274

RESUMO

Ticks are blood-feeding arachnids that are known to transmit various pathogenic microorganisms to their hosts. During blood feeding, ticks activate their metabolism and immune system to efficiently utilise nutrients from the host's blood and complete the feeding process. In contrast to insects, in which the fat body is known to be a central organ that controls essential metabolic processes and immune defense mechanisms, the function of the fat body in tick physiology is still relatively unexplored. To fill this gap, we sought to uncover the repertoire of genes expressed in the fat body associated with trachea (FB/Tr) by analyzing the transcriptome of individual, partially fed (previtellogenic) Ixodes ricinus females. The resulting catalog of individual mRNA sequences reveals a broad repertoire of transcripts encoding proteins involved in nutrient storage and distribution, as well as components of the tick immune system. To gain a detailed insight into the secretory products of FB/Tr specifically involved in inter-tissue transport and humoral immunity, the transcriptomic data were complemented with the proteome of soluble proteins in the hemolymph of partially fed female ticks. Among these proteins, the hemolipoglyco-carrier proteins were predominant. When comparing immune peptides and proteins from the fat body with those produced by hemocytes, we found that the fat body serves as a unique producer of certain immune components. Finally, time-resolved transcriptional regulation of selected immune transcripts from the FB/Tr was examined in response to experimental challenges with model microbes and analyzed by RT-qPCR. Overall, our data show that the fat body of ticks, similar to insects, is an important metabolic tissue that also plays a remarkable role in immune defense against invading microbes. These findings improve our understanding of tick biology and its impact on the transmission of tick-borne pathogens.


Assuntos
Hemolinfa , Ixodes , Feminino , Animais , Proteômica , Corpo Adiposo/metabolismo , Ixodes/genética , Ixodes/metabolismo , Perfilação da Expressão Gênica , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
5.
Gene ; 901: 148167, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224921

RESUMO

Toothed whales have developed specialized echolocation abilities that are crucial for underwater activities. Acoustic fat bodies, including the melon, extramandibular fat body, and intramandibular fat body, are vital for echolocation. This study explores the transcriptome of acoustic fat bodies in toothed whales, revealing some insight into their evolutionary origins and ecological significance. Comparative transcriptome analysis of acoustic fat bodies and related tissues in a harbor porpoise and a Pacific white-sided dolphin reveals that acoustic fat bodies possess characteristics of both muscle and adipose tissue, occupying an intermediate position. The melon and extramandibular fat body exhibit specific muscle-related functions, implying an evolutionary connection between acoustic fat bodies and muscle tissue. Furthermore, we suggested that the melon and extramandibular fat body originate from intramuscular adipose tissue, a component of white adipose tissue. The extramandibular fat body has been identified as an evolutionary homolog of the masseter muscle, supported by the specific expression of MYH16, a pivotal protein in masticatory muscles. The intramandibular fat body, located within the mandibular foramen, shows possibilities of the presence of several immune-related functions, likely due to its proximity to bone marrow. Furthermore, this study sheds light on leucine modification in the catabolic pathway, which leads to the accumulation of isovaleric acid in acoustic fat bodies. Swallowing without chewing, a major toothed whale feeding ecology adaptation, makes the masticatory muscle redundant and leads to the formation of the extramandibular fat body. We propose that the intramuscular fat enlargement in facial muscles, which influences acoustic fat body development, is potentially related to the substantial reorganization of head morphology in toothed whales during aquatic adaptation.


Assuntos
Ecolocação , Corpo Adiposo , Animais , Crânio , Acústica , Ecolocação/fisiologia , Músculos , Baleias/anatomia & histologia , Baleias/fisiologia
6.
JAMA Netw Open ; 7(1): e2350950, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38198137

RESUMO

Importance: Women with early breast cancer (EBC) exposed to aromatase inhibitors (AIs) may experience fragility fractures despite treatment with bone-active drugs. Risk factors for fractures in patients receiving AIs and denosumab have not been explored to date. Objectives: To evaluate whether an association exists between dual x-ray absorptiometry (DXA)-measured fat body mass (FBM) and vertebral fracture (VF) progression in postmenopausal women with EBC undergoing adjuvant therapy with AIs in combination with denosumab and to examine whether VF was associated with common risk factors for bone fracture and parameters of body composition other than FBM. Design, Setting, and Participants: For this prospective, single-center, cohort study, 237 patients with EBC who were undergoing adjuvant treatment with AIs and denosumab (60 mg every 6 months) were enrolled at the Breast Unit of the ASST Spedali Civili of Brescia from September 2014 to June 2018. Data analysis was conducted in June 2022. Exposure: Body composition parameters, bone mineral density, and morphometric VFs were assessed by DXA at study entry and after 18 months of therapy. Main Outcomes and Measures: VF progression, defined as either new or worsening of preexisting VFs, between the 2 time points. Results: Of the 237 patients enrolled (median [range] age, 61 [28-84] years), 17 (4.4%) reported VF progression. Univariable analysis found an association between VF progression and a history of clinical fractures (odds ratio [OR], 3.22; 95% CI, 1.19-8.74; P = .02), Fracture Risk Assessment Tool (FRAX) score for major fractures (OR, 4.42; 95% CI, 1.23-13.79; P = .04), percentage of FBM (OR, 6.04; 95% CI, 1.69-21.63; P = .006), and android fat (OR, 9.58; 95% CI, 1.17-78.21; P = .04) and an inverse association with appendicular lean mass index-FBM ratio (OR, 0.25, 95% CI, 0.08-0.82; P = .02). Multivariable analysis revealed percentage of FBM (OR, 5.41; 95% CI, 1.49-19.59; P = .01) and FRAX score (OR, 3.95; 95% CI, 1.09-14.39; P = .04) as independent variables associated with VF progression. Conclusions and Relevance: The findings of this study suggest that baseline FBM is an independent factor for VF progression in patients with EBC treated with adjuvant AIs and denosumab. This observation is new and indicates that diet and exercise may synergize with denosumab in the management of bone health in this patient setting.


Assuntos
Neoplasias da Mama , Fraturas Ósseas , Fraturas da Coluna Vertebral , Animais , Humanos , Feminino , Pessoa de Meia-Idade , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Estudos de Coortes , Denosumab/uso terapêutico , Corpo Adiposo , Estudos Prospectivos , Adjuvantes Imunológicos
7.
Pestic Biochem Physiol ; 198: 105751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225094

RESUMO

Abamectin, as a broad-spectrum bioinsecticide, has been widely used for the control of Lepidoptera insects, resulting in different levels of resistance to abamectin in Spodoptera litura. Cytochrome P450 monooxygenases (P450s) are known for their important roles in insecticide detoxification. In this study, the expression of SlCYP6B40, SlCYP4L12 and SlCYP9A32 in the fat body, and SlCYP4S9, SlCYP6AB12, SlCYP6AB58, SlCYP9A75a and SlCYP9A75b in Malpighian tubules was found to be significantly upregulated after abamectin exposure. SlCYP6AE44 and SlCYP6AN4 were simultaneously upregulated in these two tissues after abamectin exposure. Ectopically overexpressed SlCYP6AE44, SlCYP9A32 and SlCYP4S9 in transgenic Drosophila conferred tolerance to abamectin. In addition, homology modeling and molecular docking results suggested that SlCYP6AE44, SlCYP9A32 and SlCYP4S9 may be capable of binding with abamectin. These results demonstrate that upregulation of CYP3 and CYP4 genes may contribute to abamectin detoxification in S. litura and provide information for evidence-based insecticide resistance management strategies.


Assuntos
Inseticidas , Ivermectina/análogos & derivados , Túbulos de Malpighi , Animais , Spodoptera/genética , Spodoptera/metabolismo , Túbulos de Malpighi/metabolismo , Corpo Adiposo , Simulação de Acoplamento Molecular , Inseticidas/farmacologia , Inseticidas/metabolismo , Larva/genética
8.
Sci Total Environ ; 907: 168072, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37879468

RESUMO

Pesticide use in agriculture threatens non-target insects such as bees. Considering the ecological and economic relevance of native bees, such as Scaptotrigona postica, and the insufficient studies on the effects of pesticides on their behavior and physiology, improving the current knowledge on this issue is essential. Therefore, this study investigated the sublethal effects of imidacloprid, pyraclostrobin, and glyphosate on the behavior and fat body cells of S. postica. Pesticide ingestion decreased the walking distance and mean velocity of bees compared to the control and solvent control groups. The oenocytes of the control groups were spherical, with central nuclei containing decondensed chromatin, and the trophocytes presented irregular morphology, with cells varying in shape and the cytoplasm filled with vacuoles and granules. However, bees exposed to pesticides showed extensive cytoarchitectural disruption in the fat body, such as vacuolization and shape changes in oenocytes and altered nuclei morphology in trophocytes. Moreover, pesticide exposure increased the number of atypical oenocytes and altered trophocytes, except for the PYR group, which showed a lower number of atypical oenocytes. Caspase-positive labeling significantly increased in all exposed bee groups. Alternatively, TLR4 labeling was significantly decreased in the exposed groups compared to the control groups. There was a significant increase in HSP90 immunolabeling in all exposed groups compared to the control. These findings reinforce the importance of research on the sublethal effects of low pesticide concentrations on key neotropical pollinators and prove that these toxic substances can impair their detoxification and immune defense.


Assuntos
Inseticidas , Praguicidas , Abelhas , Animais , Corpo Adiposo , Neonicotinoides/toxicidade , Inseticidas/toxicidade , 60658
9.
EMBO Rep ; 24(12): e57695, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38014610

RESUMO

In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-ß signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-ß signalling to regulate ECM accumulation in the fat body. TGF-ß signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-ß signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/metabolismo , Drosophila , Insulina , Corpo Adiposo/metabolismo , Tecido Adiposo/metabolismo , Fator de Crescimento Transformador beta , Neoplasias/complicações
10.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895088

RESUMO

The fat body has important functions in energy, fertility, and immunity. In female insects, mating stimulates physiological, behavioral, and gene expression changes. However, it remains unclear whether the metabolites in the fat body are affected after the bumblebee (Bombus terrestris) queen mates. Here, the ultrastructure and lipid metabolites in fat body of mated queens were compared with those of virgins. The fat body weight of mated bumblebee queens was significantly increased, and the adipocytes were filled with lipid droplets. Using LC-MS/MS-based untargeted lipidomics, 949 and 748 differential metabolites were identified in the fat body of virgin and mated bumblebee queens, respectively, in positive and negative ion modes. Most lipid metabolites were decreased, especially some biomembrane components. In order to explore the relationship between the structures of lipid droplets and metabolite accumulation, transmission electron microscopy and fluorescence microscopy were used to observe the fat body ultrastructure. The size/area of lipid droplets was larger, and the fusion of lipid droplets was increased in the mated queen's fat body. These enlarged lipid droplets may store more energy and nutrients. The observed differences in lipid metabolites in the fat body of queens contribute to understanding the regulatory network of bumblebees post mating.


Assuntos
Corpo Adiposo , Lipidômica , Abelhas , Feminino , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Lipídeos
11.
Elife ; 122023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695169

RESUMO

Obesity induced by high-fat diet (HFD) is a multi-factorial disease including genetic, physiological, behavioral, and environmental components. Drosophila has emerged as an effective metabolic disease model. Cytidine 5'-triphosphate synthase (CTPS) is an important enzyme for the de novo synthesis of CTP, governing the cellular level of CTP and the rate of phospholipid synthesis. CTPS is known to form filamentous structures called cytoophidia, which are found in bacteria, archaea, and eukaryotes. Our study demonstrates that CTPS is crucial in regulating body weight and starvation resistance in Drosophila by functioning in the fat body. HFD-induced obesity leads to increased transcription of CTPS and elongates cytoophidia in larval adipocytes. Depleting CTPS in the fat body prevented HFD-induced obesity, including body weight gain, adipocyte expansion, and lipid accumulation, by inhibiting the PI3K-Akt-SREBP axis. Furthermore, a dominant-negative form of CTPS also prevented adipocyte expansion and downregulated lipogenic genes. These findings not only establish a functional link between CTPS and lipid homeostasis but also highlight the potential role of CTPS manipulation in the treatment of HFD-induced obesity.


The high rate of obesity has created a global health burden by leading to increased rates of chronic diseases like diabetes and cardiovascular disease. Tackling this issue is complicated as it is influenced by many factors, including genetics, behaviour and environment. To better understand the biochemical changes that underly metabolic issues in a simpler setting, scientists can study fruit flies in the laboratory. These insects share many genes with humans and have similar responses to a high-fat diet. Previous research identified an enzyme, called CTP synthase (CTPS), which is produced in large amounts by the liver and fat tissue in mammals, and the equivalent in fruit flies, known as the fat body. Multiple CTPS molecules can combine to form long strands of protein called cytoophidia, which have been seen in organisms ranging from humans to bacteria. Recent results showed that the fruit fly equivalent of CTPS drives fat cells to stick together, which is necessary to maintain and form fat tissue. However, it is not clear if altering the levels of CTPS can affect the response to a high-fat diet. To address this, Liu, Zhang, Wang et al. studied fruit flies on a high-fat diet, showing that this increased the production of CTPS. When the flies were treated to deplete levels of CTPS in the fat body, they had less body weight gain, smaller fat cells and lower amounts of fats in the body. Genetically modified flies with a version of CTPS that was unable to form cytoophidia also showed fewer signs of obesity, indicating how the enzyme might influence the response to dietary fats. These findings further implicate CTPS in the cause of obesity and help to understand its role. However, it remains to be seen if this also applies to humans. If this is the case, drugs that block the activity of CTPS could help to reduce the impact of a high-fat diet on public health.


Assuntos
Dieta Hiperlipídica , Corpo Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Fosfatidilinositol 3-Quinases , Obesidade/prevenção & controle , Peso Corporal , Drosophila , Lipídeos
12.
J Agric Food Chem ; 71(40): 14517-14526, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773746

RESUMO

Cytochrome P450 plays vital roles in detoxifying xenobiotics. In this study, SlCYP340A and SlCYP340L expression in the Spodoptera litura fat body and SlCYP332A1, SlCYP6AB12, SlCYP6AB58, SlCYP6AB59, and SlCYP6AN4 expression in the Malpighian tubules were significantly upregulated after cyantraniliprole exposure, and SlCYP6AB58 and SlCYP6AB59 expression levels were simultaneously increased in the Malpighian tubules after gossypol treatment. Drosophila ectopically expressing candidate P450 genes showed that SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A conferred cyantraniliprole tolerance. The overexpression of SlCYP6AB58 and SlCYP6AB59 in Drosophila increased the number of eggs laid under the gossypol treatment. Moreover, the knockdown of SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A increased S. litura mortality under the cyantraniliprole treatment. Homology modeling and molecular docking results suggested that candidate P450 has the potential to bind with cyantraniliprole. These results indicate that the CYP3 and CYP4 genes participate in cyantraniliprole detoxification and that SlCYP6AB59 may be simultaneously involved in the gossypol tolerance of S. litura.


Assuntos
Gossipol , Inseticidas , Animais , Spodoptera/genética , Spodoptera/metabolismo , Túbulos de Malpighi/metabolismo , Corpo Adiposo/metabolismo , Simulação de Acoplamento Molecular , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila/metabolismo , Larva/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo
13.
Nat Commun ; 14(1): 5328, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658058

RESUMO

Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.


Assuntos
Drosophila , Proteostase , Animais , Corpo Adiposo , Proteína Supressora de Tumor p53 , Morte Celular , Larva
14.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532315

RESUMO

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Assuntos
Bombyx , Lepidópteros , Praguicidas , Piretrinas , Animais , Bombyx/genética , Bombyx/metabolismo , Transcriptoma , Lepidópteros/genética , Corpo Adiposo , Perfilação da Expressão Gênica , Piretrinas/toxicidade , Piretrinas/metabolismo , Praguicidas/metabolismo
15.
Elife ; 122023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144872

RESUMO

Defective nutrient storage and adipocyte enlargement (hypertrophy) are emerging features of metabolic syndrome and type 2 diabetes. Within adipose tissues, how the cytoskeletal network contributes to adipose cell size, nutrient uptake, fat storage, and signaling remain poorly understood. Utilizing the Drosophila larval fat body (FB) as a model adipose tissue, we show that a specific actin isoform-Act5C-forms the cortical actin network necessary to expand adipocyte cell size for biomass storage in development. Additionally, we uncover a non-canonical role for the cortical actin cytoskeleton in inter-organ lipid trafficking. We find Act5C localizes to the FB cell surface and cell-cell boundaries, where it intimately contacts peripheral LDs (pLDs), forming a cortical actin network for cell architectural support. FB-specific loss of Act5C perturbs FB triglyceride (TG) storage and LD morphology, resulting in developmentally delayed larvae that fail to develop into flies. Utilizing temporal RNAi-depletion approaches, we reveal that Act5C is indispensable post-embryogenesis during larval feeding as FB cells expand and store fat. Act5C-deficient FBs fail to grow, leading to lipodystrophic larvae unable to accrue sufficient biomass for complete metamorphosis. In line with this, Act5C-deficient larvae display blunted insulin signaling and reduced feeding. Mechanistically, we also show this diminished signaling correlates with decreased lipophorin (Lpp) lipoprotein-mediated lipid trafficking, and find Act5C is required for Lpp secretion from the FB for lipid transport. Collectively, we propose that the Act5C-dependent cortical actin network of Drosophila adipose tissue is required for adipose tissue size-expansion and organismal energy homeostasis in development, and plays an essential role in inter-organ nutrient transport and signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Drosophila , Animais , Actinas/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Drosophila/metabolismo , Corpo Adiposo/metabolismo , Lipídeos , Nutrientes
16.
J Immunol ; 211(1): 140-153, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171193

RESUMO

The fat body plays a central role in the regulation of the life cycle of insects and acts as the major site for detoxification, nutrient storage, energy metabolism, and innate immunity. However, the diversity of cell types in the fat body, as well as how these cell subsets respond to virus infection, remains largely unknown. We used single-nucleus RNA sequencing to identify 23 distinct clusters representing adipocyte, hemocyte, epithelial cell, muscle cell, and glial cell types in the fat body of silkworm larvae. Further, by analysis of viral transcriptomes in each cell subset, we reveal that all fat body cells could be infected by Bombyx mori nucleopolyhedrovirus (BmNPV) at 72 h postinfection, and that the majority of infected cells carried at least a medium viral load, whereas most cells infected by BmNPV at 24 h postinfection had only low levels of infection. Finally, we characterize the responses occurring in the fat body cell clusters on BmNPV infection, which, on one hand, mainly reduce their metabolic functions, involving energy, carbohydrates, lipids, and amino acids, but, on the other hand, initiate a strong antiviral response. Our single-nucleus RNA sequencing analysis reveals the diversity of insect fat body cells and provides a resource of gene expression profiles for a systems-level understanding of their response to virus infection.


Assuntos
Bombyx , Corpo Adiposo , Animais , Corpo Adiposo/metabolismo , Bombyx/genética , Bombyx/metabolismo , Larva , Imunidade
17.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176149

RESUMO

Nuclear receptor-binding SET domain-containing protein 1 (NSD1) inactivation in tumor cells contributes to an immune-cold phenotype, indicating its potential association with immune disturbances. Drosophila NSD is a homolog of the human NSD1. Thus, in this study, we investigated the effect of NSD overexpression in the fat body, the central organ involved in Drosophila immune responses. Upon ectopic expression of NSD in the fat body, the mRNA levels of antimicrobial peptides increased. Using reporter constructs containing deletions of various NF-κB sites in the Attacin-A (AttA) promoter, we found that transcriptional activation by NSD is mainly mediated via the IMD pathway by activating Relish. Since the IMD pathway is required to resist Gram-negative bacterial infections, we further examined the effect of fat body-specific NSD overexpression on Drosophila immune defenses. Upon oral ingestion of Gram-negative Pseudomonas entomophila, the survival rate of the NSD-overexpressing larvae was higher than that of the wild type, suggesting a positive role of NSD in immune responses. Taken together, these results suggest the association of NSD with the IMD pathway and is thus expected to contribute to the elucidation of the molecular mechanisms of immune malfunction in various NSD1-associated human diseases.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Peptídeos Antimicrobianos
18.
PLoS Genet ; 19(4): e1010730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099612

RESUMO

Gene expression variation is pervasive across all levels of organismal organization, including development. Few studies, however, have examined variation in developmental transcriptional dynamics among populations, or how it contributes to phenotypic divergence. Indeed, the evolution of gene expression dynamics when both the evolutionary and temporal timescale are comparatively short remains relatively uncharacterized. Here, we examined coding and non-coding gene expression in the fat body of an ancestral African and a derived European Drosophila melanogaster population across three developmental stages spanning ten hours of larval development. Between populations, expression divergence was largely stage-specific. We detected higher expression variation during the late wandering stage, which may be a general feature of this stage. During this stage, we also detected higher and more extensive lncRNA expression in Europe, suggesting that lncRNA expression may be more important in derived populations. Interestingly, the temporal breadth of protein-coding and lncRNA expression became more restricted in the derived population. Taken together with the signatures of potential local adaptation that we detected at the sequence level in 9-25% of candidate genes (those showing evidence of expression divergence between populations), this finding suggests that gene expression becomes more developmental stage-specific during adaptation to new environments. We further used RNAi to identify several candidate genes that likely contribute to known phenotypic divergence between these populations. Our results shed light on the evolution and dynamics of expression variation over short developmental and evolutionary timescales, and how this variation contributes to population and phenotypic divergence.


Assuntos
Drosophila melanogaster , RNA Longo não Codificante , Animais , Drosophila melanogaster/genética , Corpo Adiposo , Adaptação Fisiológica , Expressão Gênica
19.
BMC Biol ; 21(1): 88, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069617

RESUMO

BACKGROUND: Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS: Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS: Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Endorreduplicação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Zinco/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos
20.
Drug Discov Ther ; 17(2): 139-143, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37045782

RESUMO

Mycobacterium abscessus causes chronic skin infections, lung diseases, and systemic or disseminated infections. Although a silkworm infection model with M. abscessus has been established, pathological analysis of the infected silkworms has not been performed. In this study, we performed hematoxylin-eosin and Ziehl-Neelsen staining of silkworms infected with M. abscessus. Four days after infection with M. abscessus, M. abscessus accumulation was observed in the fat bodies of silkworms. The number of viable M. abscessus cells in the fat bodies of the infected silkworms increased over time. These results suggest that M. abscessus proliferates in the fat bodies of the infected silkworms.


Assuntos
Bombyx , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Corpo Adiposo , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...