Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.190
Filtrar
1.
Genes Genet Syst ; 992024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382923

RESUMO

The developmental mechanisms of limb buds have been studied in developmental biology as an excellent model of pattern formation. Chick embryos have contributed to the discovery of new principles in developmental biology, as it is easy to observe live embryos and manipulate embryonic tissues. Herein, I outline recent findings and future issues over the next decade regarding three themes, based on my research: limb positioning, proximal-distal limb elongation and digit identity determination. First, how hindlimb position is determined at the molecular level is described, with a focus on the transforming growth factor-ß signaling molecule GDF11. Second, I explain how the cell population in the limb bud deforms with developmental progress, shaping the limb bud with elongation along the proximal-distal axis. Finally, I describe the developmental mechanisms that determine digit identity through the interdigits.


Assuntos
Botões de Extremidades , Transdução de Sinais , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento
2.
Dev Cell ; 59(3): 415-430.e8, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320485

RESUMO

The early limb bud consists of mesenchymal limb progenitors derived from the lateral plate mesoderm (LPM). The LPM also gives rise to the mesodermal components of the flank and neck. However, the cells at these other levels cannot produce the variety of cell types found in the limb. Taking advantage of a direct reprogramming approach, we find a set of factors (Prdm16, Zbtb16, and Lin28a) normally expressed in the early limb bud and capable of imparting limb progenitor-like properties to mouse non-limb fibroblasts. The reprogrammed cells show similar gene expression profiles and can differentiate into similar cell types as endogenous limb progenitors. The further addition of Lin41 potentiates the proliferation of the reprogrammed cells. These results suggest that these same four factors may play pivotal roles in the specification of endogenous limb progenitors.


Assuntos
Extremidades , Proteínas , Camundongos , Animais , Proteínas/metabolismo , Fibroblastos , Mesoderma/metabolismo , Botões de Extremidades
3.
Biochem Biophys Res Commun ; 687: 149146, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37956599

RESUMO

Production of cartilaginous particles for regenerative medicine requires a large supply of chondrocytes and development of suitable production techniques. Previously, we successfully produced human induced pluripotent stem cell (hiPSC)-derived limb bud mesenchymal cells (ExpLBM cells) with a high chondrogenic differentiation potential that stably proliferate. It may be possible to use these cells in combination with a stirred bioreactor to develop a tissue-engineered cell culture technology with potential for scale-up to facilitate production of large amounts of cartilaginous particles. ExpLBM cells derived from 414C2 and Ff-I 14s04 (human leukocyte antigen homozygous) hiPSCs were seeded into a stirred bioreactor containing cartilage induction medium. To characterize the cartilaginous particles produced, we performed real-time quantitative reverse transcription-polymerase chain reaction and histological analyses. Additionally, we transplanted the cartilage tissue into osteochondral defects of immunocompromised rats to assess its functionality, and evaluated engraftment of the grafted tissue. We successfully produced large amounts of cartilaginous particles via cartilage induction culture in a stirred bioreactor. This tissue exhibited significantly increased expression levels of type II collagen (COL2), aggrecan (ACAN), and SRY-box transcription factor 9 (SOX9), as well as positive Safranin O and Toluidine blue staining, indicating that it possesses characteristics of hyaline cartilage. Furthermore, engrafted tissues in osteochondral knee defects of immunodeficient rats were positively stained for human vimentin, COL2, and ACAN as well as with Safranin O. In this study, we successfully generated large amounts of hiPSC-derived cartilaginous particles using a combination of tissue engineering techniques. This method is promising as a cartilage regeneration technology with potential for scale-up.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Botões de Extremidades , Condrócitos/metabolismo , Cartilagem Hialina , Diferenciação Celular , Engenharia Tecidual/métodos , Agrecanas/metabolismo , Reatores Biológicos , Condrogênese
4.
Dev Biol ; 504: 128-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37805104

RESUMO

Transcriptional responses to the Hedgehog (HH) signaling pathway are primarily modulated by GLI repression in the mouse limb. Previous studies suggested a role for the BAF chromatin remodeling complex in mediating GLI repression. Consistent with this possibility, the core BAF complex protein SMARCC1 is present at most active limb enhancers including the majority of GLI enhancers. However, in contrast to GLI repression which reduces chromatin accessibility, SMARCC1 maintains chromatin accessibility at most enhancers, including those bound by GLI. Moreover, SMARCC1 binding at GLI-regulated enhancers occurs independently of GLI3. Consistent with previous studies, some individual GLI target genes are mis-regulated in Smarcc1 conditional knockouts, though most GLI target genes are unaffected. Moreover, SMARCC1 is not necessary for mediating constitutive GLI repression in HH mutant limb buds. We conclude that SMARCC1 does not mediate GLI3 repression, which we propose utilizes alternative chromatin remodeling complexes.


Assuntos
Cromatina , Botões de Extremidades , Animais , Camundongos , Cromatina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Botões de Extremidades/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
5.
Dev Biol ; 501: 28-38, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301463

RESUMO

Recent studies illustrate the importance of regulation of cellular metabolism, especially glycolysis and pathways branching from glycolysis, during vertebrate embryo development. For example, glycolysis generates cellular energy ATP. Glucose carbons are also directed to the pentose phosphate pathway, which is needed to sustain anabolic processes in the rapidly growing embryos. However, our understanding of the exact status of glycolytic metabolism as well as genes that regulate glycolytic metabolism are still incomplete. Sall4 is a zinc finger transcription factor that is highly expressed in undifferentiated cells in developing mouse embryos, such as blastocysts and the post-implantation epiblast. TCre; Sall4 conditional knockout mouse embryos exhibit various defects in the posterior part of the body, including hindlimbs. Using transcriptomics approaches, we found that many genes encoding glycolytic enzymes are upregulated in the posterior trunk, including the hindlimb-forming region, of Sall4 conditional knockout mouse embryos. In situ hybridization and qRT-PCR also confirmed upregulation of expression of several glycolytic genes in hindlimb buds. A fraction of those genes are bound by SALL4 at the promoters, gene bodies or distantly-located regions, suggesting that Sall4 directly regulates expression of several glycolytic enzyme genes in hindlimb buds. To further gain insight into the metabolic status associated with the observed changes at the transcriptional level, we performed a comprehensive analysis of metabolite levels in limb buds in wild type and Sall4 conditional knockout embryos by high-resolution mass spectrometry. We found that the levels of metabolic intermediates of glycolysis are lower, but glycolytic end-products pyruvate and lactate did not exhibit differences in Sall4 conditional knockout hindlimb buds. The increased expression of glycolytic genes would have caused accelerated glycolytic flow, resulting in low levels of intermediates. This condition may have prevented intermediates from being re-directed to other pathways, such as the pentose phosphate pathway. Indeed, the change in glycolytic metabolite levels is associated with reduced levels of ATP and metabolites of the pentose phosphate pathway. To further test whether glycolysis regulates limb patterning downstream of Sall4, we conditionally inactivated Hk2, which encodes a rate-limiting enzyme gene in glycolysis and is regulated by Sall4. The TCre; Hk2 conditional knockout hindlimb exhibited a short femur, and a lack of tibia and anterior digits in hindlimbs, which are defects similarly found in the TCre; Sall4 conditional knockout. The similarity of skeletal defects in Sall4 mutants and Hk2 mutants suggests that regulation of glycolysis plays a role in hindlimb patterning. These data suggest that Sall4 restricts glycolysis in limb buds and contributes to patterning and regulation of glucose carbon flow during development of limb buds.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Glicólise/genética , Botões de Extremidades/metabolismo , Camundongos Knockout
6.
STAR Protoc ; 3(4): 101786, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36317170

RESUMO

Here, we present a protocol for the selective differentiation of human pluripotent stem cells mimicking human developmental processes into expandable PRRX1+ limb-bud mesenchymal (ExpLBM) cells. This approach enables expansion through serial passage while maintaining capacity for chondrogenic differentiation. For complete details on the use and execution of this protocol, please refer to Yamada et al. (2021, 2022).


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Condrogênese , Botões de Extremidades , Proteínas de Homeodomínio
8.
Dev Cell ; 57(19): 2273-2289.e11, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220081

RESUMO

Digit determination in limb buds is driven by a posteriorizing Sonic hedgehog (Shh) protein gradient; however, the mechanism regulating this is unclear. Here, we propose a diffusion-and-trapping hypothesis for Shh gradient formation based on data from the preaxial polydactyly phenotype of KIF3B motor hypomorphic mice. In the limb buds of these mice, a distal-to-proximal gradient of fibroblast growth factor (FGF) and phosphatidylinositol 3-kinase (PI3K) signaling and a posterior-to-anterior gradient of Shh were disorganized. This phenotype was reproduced by transplanting FGF8b-soaked beads. At the subcellular level, KIF3B transported the phosphatase and tensin homolog (PTEN)-like phosphatase Talpid3 to terminate PI3K signaling. High and low PI3K signaling strengths differentially sorted endocytosed Shh toward exosome-like particles and cytonemal punctata, respectively. These results indicate that the Shh-containing particles undergo either the diffusional movement in the periphery or cytonemal trapping in the center and form a spatial gradient along the periphery of developing limb buds.


Assuntos
Proteínas Hedgehog , Polidactilia , Animais , Extremidades , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Cinesinas , Botões de Extremidades/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Monoéster Fosfórico Hidrolases/genética , Polidactilia/genética , Polidactilia/metabolismo , Tensinas/genética , Tensinas/metabolismo
10.
Dev Cell ; 57(17): 2041-2042, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099905

RESUMO

Hedgehog signaling has traditionally been considered to be a morphogen for digits. In this issue of Developmental Cell, Zhu et al. show that a brief exposure to Sonic Hedgehog is sufficient for digit specification, and this finding suggests that it is not acting as a direct morphogen but rather as an initiator of this process.


Assuntos
Proteínas Hedgehog , Botões de Extremidades , Padronização Corporal , Poeira , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Botões de Extremidades/metabolismo
11.
Development ; 149(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36093878

RESUMO

The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Animais , Linhagem da Célula , Embrião de Galinha , Membro Anterior , Botões de Extremidades
12.
Nat Commun ; 13(1): 4989, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008423

RESUMO

Tissue development and regeneration rely on the cooperation of multiple mesenchymal progenitor (MP) subpopulations. We recently identified Hic1 as a marker of quiescent MPs in multiple adult tissues. Here, we describe the embryonic origin of appendicular Hic1+ MPs and demonstrate that they arise in the hypaxial somite, and migrate into the developing limb at embryonic day 11.5, well after limb bud initiation. Time-resolved single-cell-omics analyses coupled with lineage tracing reveal that Hic1+ cells generate a unique MP hierarchy, that includes both recently identified adult universal fibroblast populations (Dpt+, Pi16+ and Dpt+ Col15a1+) and more specialised mesenchymal derivatives such as, peri and endoneurial cells, pericytes, bone marrow stromal cells, myotenocytes, tenocytes, fascia-resident fibroblasts, with limited contributions to chondrocytes and osteocytes within the skeletal elements. MPs endure within these compartments, continue to express Hic1 and represent a critical reservoir to support post-natal growth and regeneration.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Embrião de Mamíferos , Extremidades , Botões de Extremidades
13.
EMBO Rep ; 23(8): e55563, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35836403

RESUMO

Development of vertebrate limbs and fins requires that tissue growth is directed outwards, away from the body. How such directed growth is achieved is a fascinating biological problem. For limb/fin formation and outgrowth, signaling between mesenchymal cells and the overlying epithelium is essential. In particular, the epithelium at the distal margin of the growing limb/fin bud, termed the apical ectodermal ridge (AER), promotes directed outgrowth of the underlying mesenchyme, e.g., by providing polarization cues for mesenchymal cell migration. Several classical signaling pathways, such as fibroblast growth factor (Fgf), hedgehog, and Wnt signaling, are involved in the regulation of the cellular events that shape the limb/fin bud (Iovine, 2007). In this issue of EMBO Reports, Carney and colleagues surprisingly find that the Slit-Robo pathway, which is best known for its function in axon guidance, regulates the polarity of developing zebrafish fins (Mahabaleshwar et al, 2007). Intriguingly, they identify an intricate back and forth of signals between the mesenchyme and the AER. Slit ligands derived from mesenchyme act on Robo receptors in the AER to stimulate the production of sphingosine-1-phosphate, which then acts back on the mesenchyme to regulate cell polarity and orientation.


Assuntos
Botões de Extremidades , Peixe-Zebra , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/metabolismo , Mesoderma/metabolismo , Morfogênese , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Nat Commun ; 13(1): 4221, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864091

RESUMO

Sonic hedgehog (Shh) is essential for limb development, and the mechanisms that govern the propagation and maintenance of its expression has been well studied; however, the mechanisms that govern the initiation of Shh expression are incomplete. Here we report that ETV2 initiates Shh expression by changing the chromatin status of the developmental limb enhancer, ZRS. Etv2 expression precedes Shh in limb buds, and Etv2 inactivation prevents the opening of limb chromatin, including the ZRS, resulting in an absence of Shh expression. Etv2 overexpression in limb buds causes nucleosomal displacement at the ZRS, ectopic Shh expression, and polydactyly. Areas of nucleosome displacement coincide with ETS binding site clusters. ETV2 also functions as a transcriptional activator of ZRS and is antagonized by ETV4/5 repressors. Known human polydactyl mutations introduce novel ETV2 binding sites in the ZRS, suggesting that ETV2 dosage regulates ZRS activation. These studies identify ETV2 as a pioneer transcription factor (TF) regulating the onset of Shh expression, having both a chromatin regulatory role and a transcriptional activation role.


Assuntos
Proteínas Hedgehog , Botões de Extremidades , Polidactilia , Fatores de Transcrição , Animais , Cromatina/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Anat Histol Embryol ; 51(5): 592-601, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35815632

RESUMO

Cartilage differentiates in rat limb buds cultivated in a chemically defined protein-free medium in the same manner as in the richer serum-supplemented medium. We aimed to investigate the remaining differentiation potential of pre-cultivated limb buds by subsequent transplantation in vivo. Rat front (FLBs) and hind-limb buds (HLBs) were isolated from Fischer rat dams at the 14th gestation day (GD 14) and cultivated at the air-liquid interface in Eagle's Minimum Essential Medium (MEM) alone; with 5 µM of 5-azacytidine (5azaC) or with rat serum (1:1). Overall growth was measured seven times during the culture by an ocular micrometre. After 14 days, explants were transplanted under the kidney capsule of adult males. Growth of limb buds was significantly lower in all limb buds cultivated in MEM than in those cultivated with serum. In MEM with 5azaC, growth of LBs was significantly lower only on day 3 of culture. Afterwards, it was higher throughout the culture period, although a statistically significant difference was assessed only for HLBs. In transplants, mixed structures developed with the differentiated transmembranous bone, cartilage with enchondral ossification, bone-marrow, sebaceous gland, and hair that have never been found in vitro. Nerves differentiated only in transplants precultivated in the serum-supplemented medium. We conclude that pre-cultivation of LBs in a chemically defined protein-free medium does not restrict osteogenesis and formation of epidermal appendages but is restrictive for neural tissue. These results are important for understanding limb development and regenerative medicine strategies.


Assuntos
Botões de Extremidades , Osteogênese , Animais , Azacitidina , Epiderme , Masculino , Ratos , Ratos Endogâmicos F344
16.
Dev Dyn ; 251(11): 1880-1896, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35809036

RESUMO

BACKGROUND: Limb buds develop as bilateral outgrowths of the lateral plate mesoderm and are patterned along three axes. Current models of proximal to distal patterning of early amniote limb buds suggest that two signals, a distal organizing signal from the apical epithelial ridge (AER, Fgfs) and an opposing proximal (retinoic acid [RA]) act early on pattern this axis. RESULTS: Transcriptional analysis of stage 51 Xenopus laevis hindlimb buds sectioned along the proximal-distal axis showed that the distal region is distinct from the rest of the limb. Expression of capn8.3, a novel calpain, was located in cells immediately flanking the AER. The Wnt antagonist Dkk1 was AER-specific in Xenopus limbs. Two transcription factors, sall1 and zic5, were expressed in distal mesenchyme. Zic5 has no described association with limb development. We also describe expression of two proximal genes, gata5 and tnn, not previously associated with limb development. Differentially expressed genes were associated with Fgf, Wnt, and RA signaling as well as differential cell adhesion and proliferation. CONCLUSIONS: We identify new candidate genes for early proximodistal limb patterning. Our analysis of RA-regulated genes supports a role for transient RA gradients in early limb bud in proximal-to-distal patterning in this anamniote model organism.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Animais , Botões de Extremidades/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Mesoderma/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Tretinoína/metabolismo , Extremidades , Expressão Gênica , Ectoderma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
17.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274676

RESUMO

The 5'Hox genes play crucial roles in limb development and specify regions in the proximal-distal axis of limbs. However, there is no direct genetic evidence that Hox genes are essential for limb development in non-mammalian tetrapods or for limb regeneration. Here, we produced single to quadruple Hox13 paralog mutants using the CRISPR/Cas9 system in newts (Pleurodeles waltl), which have strong regenerative capacities, and also produced germline mutants. We show that Hox13 genes are essential for digit formation in development, as in mice. In addition, Hoxa13 has a predominant role in digit formation, unlike in mice. The predominance is probably due to the restricted expression pattern of Hoxd13 in limb buds and the strong dependence of Hoxd13 expression on Hoxa13. Finally, we demonstrate that Hox13 genes are also necessary for digit formation in limb regeneration. Our findings reveal that the general function of Hox13 genes is conserved between limb development and regeneration, and across taxa. The predominance of Hoxa13 function both in newt limbs and fish fins, but not in mouse limbs, suggests a potential contribution of Hoxa13 function in fin-to-limb transition.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Animais , Extremidades , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Camundongos , Salamandridae/genética , Salamandridae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cells ; 11(3)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159230

RESUMO

Early limb bud development has been of considerable interest for the study of embryological development and especially morphogenesis. The focus has long been on biochemical signalling and less on cell biomechanics and mechanobiology. However, their importance cannot be understated since tissue shape changes are ultimately controlled by active forces and bulk tissue rheological properties that in turn depend on cell-cell interactions as well as extracellular matrix composition. Moreover, the feedback between gene regulation and the biomechanical environment is still poorly understood. In recent years, novel experimental techniques and computational models have reinvigorated research on this biomechanical and mechanobiological side of embryological development. In this review, we consider three stages of early limb development, namely: outgrowth, elongation, and condensation. For each of these stages, we summarize basic biological regulation and examine the role of cellular and tissue mechanics in the morphogenetic process.


Assuntos
Desenvolvimento Embrionário , Botões de Extremidades , Fenômenos Biomecânicos , Morfogênese/fisiologia , Transdução de Sinais
19.
Bosn J Basic Med Sci ; 22(4): 560-568, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35188093

RESUMO

Although DNA methylation epigenetically regulates development, data on global DNA methylation during development of limb buds (LBs) are scarce. We aimed to investigate the global DNA methylation developmental dynamics in rat LBs cultivated in a serum-supplemented (SS) and in chemically defined serum- and protein-free (SF) three-dimensional organ culture. Fischer rat front- and hind-LBs at 13th and 14th gestation days (GD) were cultivated at the air-liquid interface in Eagle's Minimal Essential Medium (MEM) or MEM with 50% rat serum for 14 days, as SF and SS conditions, respectively. The methylation of repetitive DNA sequences (SINE rat ID elements) was assessed by pyrosequencing. Development was evaluated by light microscopy and extracellular matrix glycosaminoglycans staining by Safranin O. Upon isolation, weak Safranin O staining was present only in more developed GD14 front-LBs. Chondrogenesis proceeded well in all cultures towards day 14, except in the SF-cultivated GD13 hind-LBs, where Safranin O staining was almost absent on day 3. That was associated with a higher percentage of DNA methylation than in SF-cultivated GD13 front-LBs on day three. In SF-cultivated front-LBs, a significant methylation increase between the 3rd and 14th day was detected. In SS-cultivated GD13 front-LBs, methylation increased significantly on day three and then decreased. In older GD14 SS-cultivated LBs, there was no increase of DNA methylation, but they were significantly hypomethylated relative to the SS-cultivated GD13 at days 3 and 14. We confirmed that the global DNA methylation increase is associated with less developed limb organ primordia that strive towards differentiation in vitro, which is of importance for regenerative medicine strategies.


Assuntos
Condrogênese , Botões de Extremidades , Animais , Diferenciação Celular , Metilação de DNA , Matriz Extracelular , Técnicas de Cultura de Órgãos , Ratos
20.
Dev Biol ; 483: 76-88, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34973174

RESUMO

The chick limb bud has plasticity to reconstruct a normal skeletal pattern after a part of mesenchymal mass is excised to make a hole in its early stage of development. To understand the details of hole closure and re-establishment of normal limb axes to reconstruct a normal limb skeleton, we focused on cellular and molecular changes during hole repair and limb restoration. We excised a cube-shaped mass of mesenchymal cells from the medial region of chick hindlimb bud (stage 23) and observed the following morphogenesis. The hole had closed by 15 â€‹h after excision, followed by restoration of the limb bud morphology, and the cartilage pattern was largely restored by 48 â€‹h. Lineage analysis of the mesenchymal cells showed that cells at the anterior and posterior margins of the hole were adjoined at the hole closure site, whereas cells at the proximal and distal margins were not. To investigate cell polarity during hole repair, we analyzed intracellular positioning of the Golgi apparatus relative to the nuclei. We found that the Golgi apparatus tended to be directed toward the hole among cells at the anterior and posterior margins but not among cells at identical positions in normal limb buds or cells at the proximal and distal hole margins. In the manipulated limb buds, the frequency of cell proliferation was maintained compared with the control side. Tbx3 expression, which was usually restricted to anterior and posterior margins of the limb bud, was temporarily expanded medially and then reverted to a normal pattern as limb reconstruction proceeded, with Tbx3 negative cells reappearing in the medial regions of the limb buds. Thus, mesenchymal hole closure and limb reconstruction are mainly mediated by cells at the anterior and posterior hole margins. These results suggest that adjustment of cellular properties along the anteroposterior axis is crucial to restore limb damage and reconstruct normal skeletal patterns.


Assuntos
Padronização Corporal/fisiologia , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Esqueleto/embriologia , Animais , Proteínas Aviárias/metabolismo , Núcleo Celular/metabolismo , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Extremidades/embriologia , Complexo de Golgi/metabolismo , Membro Posterior/embriologia , Transdução de Sinais/fisiologia , Esqueleto/citologia , Esqueleto/metabolismo , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...