Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(2): e13881, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37886898

RESUMO

Cryptocaryoniasis remains a major parasitic disease and economic challenge for marine aquaculture. Cryptocaryoniasis in marine fish is caused by Cryptocaryon irritans (Ciliata). A theront is a motile, free-swimming stage in the life cycle of C. irritans, which is typically the infective stage that actively seeks out a host to initiate infection. Population density and growth rate of theronts were investigated in Nile tilapia, Oreochromis niloticus fed with citric acid-supplemented feed. The experiment involved feeding three diets with graded levels of citric acid (0, control diet, 0.5, 1 and 1.5 g kg-1 diet), to seawater-adapted Nile tilapia (O. niloticus) juveniles for 21 days. The results showed that citric acid in the fish feed had an impact on the theront number of C. irritans in a manner of dose-dependent. In the experimental cohort administered a diet supplemented with 1.5 g kg-1 citric acid, the population density of theronts was observed to be significantly reduced, measured at 29 ± 3.34, as opposed to 473.34 ± 16.48 in the control group at the culmination of the experiment. The observed population growth rate of theronts was significantly higher in the control group than in the group administered the citric acid feed (p < .005). The growth rate (r d-1 ) was 0.12 in control, 0.05 in 0.5 g kg-1 , 0.031 in 1 g kg-1 , and - 0.031 in 1.5 g kg-1 citric acid-supplemented groups. Fish growth and feed conversion ratio were not affected by the citric acid in the feed. In conclusion, the findings of this investigation provide a valuable addition to our understanding of the potential protective effects of citric acid supplementation for fish against the C. irritans parasite. This is evidenced by the observed reduction in theronts present in the water.


Assuntos
Ciclídeos , Cilióforos , Doenças dos Peixes , Gadiformes , Hymenostomatida , Tilápia , Humanos , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/parasitologia , Dieta/veterinária , Suplementos Nutricionais , Água do Mar , Ração Animal/análise
2.
Fish Shellfish Immunol ; 144: 109258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042226

RESUMO

Large yellow croaker (Larimichthys crocea) is the most productive marine fish in China. Cryptocaryon irritans is an extremely destructive parasite that causes great economic losses in large yellow croaker aquaculture industry. Therefore, it is very necessary to study the immune response of large yellow croaker in response to C. irritans infection. In this study, the transcriptomic profiles of large yellow croaker were sequenced and analyzed in the brain and head kidney at 72 h after C. irritans infection. Cytokines and chemokines related terms were significantly enriched based on the GO enrichment of down-regulated differentially expressed genes (DEGs) from the head kidney. Meanwhile, cytokine-cytokine receptor interaction was significantly enriched based on the KEGG enrichment of up-regulated DEGs from the brain and down-regulated DEGs from the head kidney, respectively. Moreover, the majority of inflammation-related DEGs were significantly up-regulated in the brain, but distinctly down-regulated in the head kidney. These results showed that the brain and head kidney might play different roles against C. irritans infection, and the inflammatory response of large yellow croaker may be restrained during C. irritans infection. Taken together, the transcriptomic analyses will be helpful to more comprehensively understand the immune mechanism of teleost against C. irritans infection, and provide a theoretical basis for the prevention and treatment of Cryptosporidiosis.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Cilióforos/fisiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária
3.
Mar Biotechnol (NY) ; 25(5): 824-836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610535

RESUMO

The ciliate protozoan Ichthyophthirius multifiliis is an essential parasite causing white spot disease in grass carp, leading to significant economic losses. Understanding the molecular basis of grass carp's response to I. multifiliis has important scientific and environmental values. The transcriptional network analysis offers a valuable strategy to decipher the changes in gene expression in grass carp infected with I. multifiliis. Our goal was to screen the genes and pathways involved in resistance to I. multifiliis in grass carp. The different traits exhibited by grass carp infected with I. multifiliis may be caused by the differences in gene expression among grass carp individuals. Herein, to reveal those resistance-associated genes against I. multifiliis infection, we performed RNA sequencing using weighted gene co-expression network analysis (WGCNA). The biological function analysis and hub gene annotation for highly relevant modules revealed that different pathogen recognition and clearance responses resulted in different resistance to I. multifiliis infection. Furthermore, gene enrichment analysis revealed that I. multifiliis invasion in the disease-resistant group mainly activated immune pathways, including scavenger receptor activity and kappa B kinase/NF-kappa B signaling. By the annotation of the highly correlated module of the hub gene, we revealed that the apoptosis and ribosome biogenesis-related genes were enriched in the disease-resistant grass carp. The results of the dark grey module showed that several genes were mainly enriched in the two-component system (ko02020) and steroid biosynthesis (ko00100), suggesting that they are resistance-associated and energy metabolism-associated genes. In the disease resistance group, hub genes mainly included Nlrc3, fos, AAP8, HAP2, HAX, cho2, and zgc:113,036. This study revealed the gene network associated with disease resistance after I. multifiliis infection. The disease resistance-related pathways and central genes identified in this study are candidate references for breeders breeding disease-resistant. The results of this study may also provide some references for the development of drugs to antagonize I. multifiliis infection.


Assuntos
Carpas , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Humanos , Animais , Infecções por Cilióforos/genética , Infecções por Cilióforos/veterinária , Carpas/genética , Resistência à Doença/genética , Hymenostomatida/genética , Redes Reguladoras de Genes
4.
Virulence ; 14(1): 2242622, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551042

RESUMO

Ichthyophthirius multifiliis is an obligate parasitic ciliate that causes severe economic damage in aquaculture. The parasite contains numerous extrusive organelles (extrusomes) that assist in its pathogenesis and reproduction. However, the structure of these extrusomes and the molecular profiles involved in exocytosis remain unclear. In the present study, through comparative ultrastructural observations across the life cycle of I. multifiliis, we demonstrated that all three of its life stages (theront, trophont, and tomont) exhibited an abundance of extrusomes. In addition, two different types of extrusomes were identified according to their unique structures. Type I extrusomes (mucocysts) are crystalline, oval-shaped, 0.7-1.4 × 0.6-1.1 µm, and distributed as "rosettes" below the trophont membrane. Type II extrusomes, 2.0-3.0 × 0.2-0.3 µm, are rod-shaped with tubular cores and identified as toxicysts, the aggregation of which in the anterior part of the theront and cortex of the trophont revealed their potential roles in I. multifiliis invasion. This was confirmed by our transcriptome investigations of the three stages of I. multifiliis, which revealed that a set of genes involved in proteolysis and DNA/protein biogenesis was highly expressed in the theront and trophont. Furthermore, to map the molecular mechanisms of extrusome release, we characterized 25 Rab family genes in I. multifiliis and determined their expression profiles across the life cycle, reflecting the distribution patterns of the two extrusomes. Collectively, our data revealed that a highly developed extrusome system could play a potential role in the virulence of I. multifiliis, which facilitates a better understanding of the parasite's development.


Assuntos
Doenças dos Peixes , Hymenostomatida , Parasitos , Animais , Transcriptoma , Virulência , Hymenostomatida/genética , Peixes
5.
Fish Shellfish Immunol ; 140: 108943, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451523

RESUMO

Cryptocaryon irritans is a ciliated obligate parasite that causes cryptocaryonosis (white spot disease) and poses great threat to marine fish farming. In recent years, the use of probiotics protects fish from pathogens, which has been identified as the sustainable and environmentally friendly tool to maintain the health and well-being of the host. Accordingly, Cryptocaryon irritans tomont and probiotic Bacillus strain (B.licheniformis, previously isolated from aquaculture water) were co-cultured to detect whether B. licheniformis has anti-C. irritants effect. The result showed that during 4-day incubation, B. licheniformi with 1 × 107 CFU/mL and 1 × 108 CFU/mL concentration effectively inhibited the incubation of C. irritans tomont, indicating that B. licheniformi could inhibit the transformation from reproductive tomont to infective theront of C. irritans. Later, C. irritans samples in the control (without B. licheniformi supplementation) and 1 × 107 CFU/mL B. licheniformi treatment group were sent for transcriptome analysis. Compare with the control group, a total of 3237 differentially expressed genes were identified, among which 626 genes were up-regulated and 2611 genes were down-regulated in 1 × 107 CFU/mL B. licheniformi group. Further Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that anti-C. irritans mechanism of B. licheniformi was mainly involved in the energy metabolism (carbon metabolism, oxidative phosphorylation, biosynthesis of amino acids), transcription and translation (Ribosomes, spliceosomes, RNA transport, etc), lysosome-based degradation (lysosome, phagosome, protein processing in endoplasmic reticulum) and PI3K-Akt pathways. Our study findings raised the possibility of using marine microorganism B. licheniformi in handling aquaculture associated pathogen C. irritans, and preliminarily clarified the molecular mechanism.


Assuntos
Bacillus licheniformis , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/parasitologia , Bacillus licheniformis/genética , Fosfatidilinositol 3-Quinases/genética , Doenças dos Peixes/genética , Perfilação da Expressão Gênica/veterinária , Perciformes/genética , Transcriptoma
6.
Vet Parasitol ; 320: 109972, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385103

RESUMO

Marine cultured fish often suffer from Cryptocaryon irritans infection, which causes enormous mortality. C. irritans is resistant to oxidative damage induced by zinc. To develop an effective drug to control the parasite, a putative thioredoxin glutathione reductase (CiTGR) from C. irritans was cloned and characterized. CiTGR was designed as a target to screen for inhibitors by molecular docking. The selected inhibitors were tested both in vitro and in vivo. The results showed that CiTGR is located in the nucleus of the parasite, possesses a common pyridine-oxidoreductases redox active center, and lacks a glutaredoxin active site. Recombinant CiTGR exhibited high TrxR activity but low glutathione reductase activity. Shogaol was found to significantly suppress TrxR activity and enhance toxicity of zinc on C. irritans (P < 0.05). The abundance of C. irritans on the fish body decreased significantly after oral administration of shogaol (P < 0.05). These results implied that CiTGR could be used to screen for drugs that weaken the resistance of C. irritans to oxidative stress, which is critical for controlling the parasite in fish. This paper deepens the understanding of the interaction between ciliated parasites and oxidative stress.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/parasitologia , Simulação de Acoplamento Molecular , Perciformes/parasitologia , Peixes , Zinco , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/parasitologia
7.
Fish Shellfish Immunol ; 139: 108879, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271326

RESUMO

The orange-spotted grouper (Epinephelus coioides) is a high economic value aquacultural fish in China, however, it often suffers from the outbreak of parasitic ciliate Cryptocaryon irritans as well as bacterium Vibrio harveyi which bring great loss in grouper farming. In the present study, we established a high dose C. irritans local-infected model which caused the mortality of groupers which showed low vitality and histopathological analysis demonstrated inflammatory response and degeneration in infected skin, gill and liver. In addition, gene expression of inflammatory cytokines was detected to assist the estimate of inflammatory response. Furthermore, we also found that the activity of Na+/K+ ATPase in gill was decreased in groupers infected C. irritans and the concentration of Na+/Cl- in blood were varied. Base on the morbidity symptom occurring in noninfected organs, we hypothesized that the result of morbidity and mortality were due to secondary bacterial infection post parasitism of C. irritans. Moreover, four strains of bacteria were isolated from the infected site skin and liver of local-infected groupers which were identified as V. harveyi in accordance of phenotypic traits, biochemical characterization and molecular analysis of 16S rDNA genes, housekeeping genes (gyrB and cpn60) and species-specific gene Vhhp2. Regression tests of injecting the isolated strain V. harveyi has showed high pathogenicity to groupers. In conclusion, these findings provide the evidence of coinfections with C. irritans and V. harveyi in orange-spotted grouper.


Assuntos
Bass , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Vibrioses , Vibrio , Animais , Bass/metabolismo , Vibrio/metabolismo , Cilióforos/fisiologia , Vibrioses/microbiologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
8.
BMC Vet Res ; 19(1): 62, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932404

RESUMO

BACKGROUND: Recently, an increasing number of ichthyophthiriasis outbreaks has been reported, leading to high economic losses in fisheries and aquaculture. Although several strategies, including chemotherapeutics and immunoprophylaxis, have been implemented to control the parasite, no effective method is available. Hence, it is crucial to discover novel drug targets and vaccine candidates against Ichthyophthirius multifiliis. For this reason, understanding the parasite stage biology, host-pathogen interactions, molecular factors, regulation of major aspects during the invasion, and signaling pathways of the parasite can promote further prospects for disease management. Unfortunately, functional studies have been hampered in this ciliate due to the lack of robust methods for efficient nucleic acid delivery and genetic manipulation. In the current study, we used antisense technology to investigate the effects of targeted gene knockdown on the development and infectivity of I. multifiliis. Antisense oligonucleotides (ASOs) and their gold nanoconjugates were used to silence the heat shock protein 90 (hsp90) of I. multifiliis. Parasite stages were monitored for motility and development. In addition, the ability of the treated parasites to infect fish and cause disease was evaluated. RESULTS: We demonstrated that ASOs were rapidly internalized by I. multifiliis and distributed diffusely throughout the cytosol. Knocking down of I. multifiliis hsp90 dramatically limited the growth and development of the parasite. In vivo exposure of common carp (Cyprinus carpio) showed reduced infectivity of ASO-treated theronts compared with the control group. No mortalities were recorded in the fish groups exposed to theronts pre-treated with ASOs compared with the 100% mortality observed in the non-treated control fish. CONCLUSION: This study presents a gene regulation approach for investigating gene function in I. multifiliis in vitro. In addition, we provide genetic evidence for the crucial role of hsp90 in the growth and development of the parasite, suggesting hsp90 as a novel therapeutic target for successful disease management. Further, this study introduces a useful tool and provides a significant contribution to the assessing and understanding of gene function in I. multifiliis.


Assuntos
Carpas , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Animais , Doenças dos Peixes/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/tratamento farmacológico , Infecções por Cilióforos/parasitologia , Hymenostomatida/fisiologia , Proteínas de Choque Térmico
9.
Fish Shellfish Immunol ; 135: 108645, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870429

RESUMO

As one of the key components of innate immune system, piscidins are likely to play pivotal role in the first defense line in fish. Piscidins own multiple resistance activity. A novel piscidin 5-like type 4 was excavated from Larimichthys crocea (termed Lc-P5L4) liver transcriptome immuned by Cryptocaryon irritans, and upregulated at 7 days post infection when secondary bacterial infection occurred. In the study, we characterized the antibacterial activity of Lc-P5L4. The liquid growth inhibition assay detected the recombinant Lc-P5L4 (rLc-P5L) had potent antibacterial activity to Photobacterium damselae. Scanning electron microscope (SEM) observed the cell surface of P. damselae collapsed to form pit, and membrane of some bacteria ruptured after co-incubation with rLc-P5L. Further, transmission electron microscope (TEM) was also employed to observe the intracellular microstructural damage, rLc-P5L4 caused cytoplasm contraction, pores formation and contents leakage. After knowing about its antibacterial effects, the preliminary antibacterial mechanism was also explored, western blot analysis showed rLc-P5L4 could bind to P. damselae through targeting to LPS. Agarose gel eletrophoresis analysis further showed rLc-P5L4 could also penetrate into cells and brought about genome DNA degradation. Therefore, rLc-P5L4 was of potential being a candidate to explore new antimicrobial drug or additive agent, especially to P. damselae.


Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Peixes/química
10.
Fish Shellfish Immunol ; 135: 108650, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36858330

RESUMO

Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. However, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatened the healthy and sustainable development of L. crocea industry. Recently, a new C. irritans resistance strain of L. crocea (RS) has been bred using genomic selection technology in our laboratory work. However, the molecular mechanisms for C. irritans resistance of RS have not been fully understood. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that are post-transcriptional regulators, and they play vital roles in immune process of bony fish. Identification of anti-C.irritans relevant miRNA signatures could, therefore, be of tremendous translational value. In the present study, integrated mRNA and miRNA expression analysis was used to explore C. irritans resistance mechanisms of the L. crocea. RS as well as a control strain (CS) of L. crocea, were artificially infected with C. irritans for 100 h, and their gill was collected at 0 h (pre-infection), 24 h (initial infection), and 72 h (peak infection) time points. The total RNA from gill tissues was extracted and used for transcriptome sequencing and small RNA sequencing. After sequencing, 23,172 known mRNAs and 289 known miRNAs were identified. The differential expression was analyzed in these mRNAs and mRNAs and the interactions of miRNA-mRNA pairs were constructed. KEGG pathway enrichment analyses showed that these putative target mRNAs of differentially expressed miRNAs (DEMs) were enriched in different immune-related pathways after C. irritans infection in RS and CS. Among them, necroptosis was the immune-related pathway that was only significantly enriched at two infection stages of RS group (RS-24 h/RS-0h and RS-72 h/RS-0h). Further investigation indicates that necroptosis may be activated by DEMs such as miR-133a-3p, miR-142a-3p and miR-135c, this promotes inflammation responses and pathogen elimination. These DEMs were selected as miRNAs that could potentially regulate the C. irritans resistance of L. crocea. Though these inferences need to be further verified, these findings will be helpful for the research of the molecular mechanism of C. irritans resistance of L. crocea and miRNA-assisted molecular breeding of aquatic animals.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , MicroRNAs , Perciformes , Animais , Cilióforos/fisiologia , RNA Mensageiro/genética , Proteínas de Peixes/genética , MicroRNAs/genética
11.
Fish Shellfish Immunol ; 133: 108562, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682479

RESUMO

Cryptocaryon irritans is a parasitic ciliate of marine fish, causing serious mortality and economic loss of grouper. In this study, the orange-spotted grouper (Epinephelus coioides) were separately exposed to C. irritans infection for 72 h at a dose of 5000 or 10000 active theronts per fish, and we evaluated the changes in histopathology, oxidative stress, immune response, and intestinal microbiota composition. The results showed that C. irritans infection caused pathological alteration on the skin, gills, and liver of E. coioides. Oxidative stress responses occurred in the liver and gills, reflected in the corresponding antioxidant enzyme and gene indexes. The mRNA expression levels of inflammation-related genes (IL-1ß, IL-6, and IL-8) and the mediators of apoptosis (casp3, casp9, and cytc) were increased in the liver and gills of the fish. C. irritans infection also affected the diversity and composition of intestinal microbiota. Specifically, the relative abundance of Firmicutes was increased, whereas that of Proteobacteria was decreased. Several potentially beneficial bacteria (Pandoraea, Clostridium sensu stricto 1, Christensenellaceae R-7 group, and Weissella) were decreased, whereas pathogenic bacteria (Streptococcus and Acinetobacter) were increased. In conclusion, this study reveals that C. irritans infection caused histopathology, immune disorders, and intestinal microbial community variation in E. coioides.


Assuntos
Bass , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Microbioma Gastrointestinal , Hymenostomatida , Animais , Filogenia , Cilióforos/fisiologia , Imunidade , Estresse Oxidativo , Proteínas de Peixes
12.
Parasite Immunol ; 45(3): e12967, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606416

RESUMO

The parasitic ciliate Cryptocaryon irritans, which infects almost all marine fish species occurring in both tropical and subtropical regions throughout the world. The disease, cryptocaryonosis, accounts for significant economic losses to the aquaculture industry. This review attempts to provide a comprehensive overview of the biology of the parasite, host-parasite interactions and both specific and non-specific host defense mechanisms are responsible for the protection of fish against challenge infections with this ciliate. Also, this article reflects the current interest in this subject area and the quest to develop an available vaccine against the disease. Due to the high frequency of clinical fish cryptocaryonosis, the study of fish immune responses to C. irritans provides an optimal experimental model for understanding immunity against extracellular protozoa.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Animais , Cilióforos/fisiologia , Peixes
13.
J Fish Dis ; 46(4): 357-367, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36606558

RESUMO

Ichthyophthiriasis, caused by the parasitic ciliate Ichthyophthirius multifiliis (Ich), is considered one of the most harmful diseases affecting freshwater fish globally. It can cause mass mortalities of fish in intensive farming systems. In such systems, it is thus necessary to detect and quantify the number of Ich in the water so that control measures can be implemented before Ichthyophthiriasis breaks out. In recent years, molecular diagnostic methods have become increasingly important in aquaculture. Real-time quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) have become robust assays for detecting pathogens. In this study, a set of specific primers and a TaqMan-minor groove binder probe targeting the small-subunit rDNA (SSU rDNA) of Ich were developed. They were used in qPCR and ddPCR assays to compare the performance of these two different methods in quantitatively detecting Ich. After optimizing the reaction conditions, both qPCR and ddPCR assays were found to have high linearity and quantitative correlations for standard plasmid DNA. When used for the detection of Ich eDNA in water samples, the qPCR assay had a wider detection range, making it a suitable method to screen for the prevalence of Ichthyophthiriasis. However, the ddPCR approach had higher sensitivity, which would help provide advance notice of the disease in complex water environmental samples.


Assuntos
Doenças dos Peixes , Hymenostomatida , Animais , Doenças dos Peixes/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Água Doce , Água , DNA Ribossômico
14.
Vet Parasitol ; 314: 109868, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603452

RESUMO

Encystation in Cryptocaryon irritans is a fundamental process for environmental resistance and development. Autophagy participates in the encystation of ciliates, and rapamycin can induce autophagy in the cells. A set of genes and metabolites related to autophagy and encystation are highly elaborative. The existence of these genes and metabolites and their role are well characterized. However, little is known about their role in protozoans such as ciliates. The newly produced C. irritans protomonts were exposed to an optimal concentration of rapamycin (1400 nM), and the survival, encystation, microstructure/ultrastructure, transcriptomic and metabolomic profile in treated and control protomonts were investigated. The results showed that exposure of protomonts to rapamycin at 4 h significantly lowered the survival and encystation rates to 91.62 % and 98.44 % compared to the control group (100 %, p ≤ 0.05). Morphological alterations observed in light microscopy and transmission electron microscopy (TEM) demonstrated that the drug significantly changed cell symmetry by causing the formation of various autophagic vacuoles/vesicles. The transcriptome sequencing of rapamycin-treated protomont revealed that 2249 (1837 up-regulated and 977 down-regulated) differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 226 DEGs were successfully annotated in 21 pathways (p˂0.05), including most enriched pathways apoptosis and phagosome with 25 and 24 DEGs, respectively. Most unigenes were assigned to autophagy-related pathways; 24 DEGs were classified into phagosomes, and 15 DEGs were assigned to lysosome pathways. Cytoskeleton and cell progression-associated genes were down-regulated. Besides, cell death-inducing proteins were up-regulated. The metabolomic analysis revealed exposure to rapamycin treatment enhanced protomont metabolites, including L-Cysteine, which is related to autophagy. Rapamycin had influenced the gene and metabolites of protomont; activating autophagy with inhibition of mechanistic target of rapamycin, (mTOR). The process negatively influences protomont morphology, encystation, and survival. Further autophagy-related gene silencing can be investigated via genome sequencing of C. irritans to study encystation.


Assuntos
Infecções por Cilióforos , Cilióforos , Hymenostomatida , Animais , Cilióforos/genética , Cilióforos/ultraestrutura , Infecções por Cilióforos/veterinária , Perfilação da Expressão Gênica/veterinária , Hymenostomatida/genética , Metabolômica , Transcriptoma , Sirolimo/farmacologia
15.
J Fish Dis ; 46(4): 347-356, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651652

RESUMO

Cryptocaryon irritans is one of the most harmful marine parasites in mariculture. Copper sulphate is often used to kill parasites and the influence of copper sulphate on the tomont stage of C. irritans was explored in this study. The results showed that excystment rate was not significantly affected when tomonts were exposed to 5 mg/L (76.7%) and 10 mg/L (78.9%) of copper sulphate for 3 h. However, excystment rate was significantly inhibited when exposed to 15 mg/L (33.3%) for 3 h and 5 mg/L (28.9%), 10 mg/L (33.3%) and 15 mg/L (33.3%) for 6 h. After treatment with high concentrations of copper sulphate, the interior of the tomonts was fuzzy under the microscope, and the division process could not be observed. Metabolomic results combined with preliminary transcriptome analysis results showed that the tomonts were induced to produce linoleate, riboflavin, inositol and other substances under the stress of Cu2+ , which affected the antioxidant mechanism of the body. Using MDA content determination and antioxidant enzyme activity analysis, copper sulphate was found to cause oxidative damage to tomonts by affecting the generation of metabolites, leading to the death of tomonts.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/parasitologia , Sulfato de Cobre/farmacologia , Antioxidantes , Doenças dos Peixes/parasitologia , Metaboloma , Perciformes/parasitologia
16.
Parasitol Res ; 122(2): 509-517, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526927

RESUMO

Encystment is crucial for defense and reproduction in Cryptocaryon irritans. Therefore, understanding the encystment-related events in the protomont stage can help prevent and control C. irritans. Autophagy promotes protozoan parasite encystation. However, 3MA can inhibit autophagy. In this study, the effects of autophagy inhibition on encystation, survival rate, ultrastructural features, and metabolomic profiles of C. irritans, were evaluated using protomonts treated with 3MA (20 mM). The treatment with 3MA for about 4 h significantly lowered survival and encystation rates of protomonts to about 86.44% and 76.08%, respectively. Microstructural observations showed that the 3MA-treated protomonts showed deformed cell membranes and the cytoplasmic content spill. Furthermore, observation of the ultrastructure of 3MA-treated protomonts showed the destruction of organelles (Golgi bodies and mucocyst) and a lack of autophagosomes. However, no abnormality was observed in the control experiments. Furthermore, the metabolic analysis revealed suppression of metabolites, such as lipids, amino acids, and carbohydrates. These results demonstrate that 3MA can inhibit autophagy in C. irritans, thus hindering encystation, suppressing the metabolism of metabolites, and altering morphological ultrastructure in these parasites.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Cilióforos/fisiologia , Infecções por Cilióforos/parasitologia , Perciformes/parasitologia , Autofagia , Doenças dos Peixes/parasitologia
17.
J Fish Dis ; 46(3): 215-227, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36519440

RESUMO

Cryptocaryon irritans causes one of the most serious diseases in various wild and cultured marine fish, leading to mass mortality and economic loss. In this study, hydroxyl radical (•OH) solution produced by strong ionization discharge combined with water jet cavitation effect was injected into orange-spotted grouper (Epinephelus coioides) aquaculture tanks for C. irritans control. The results showed that all C. irritans theronts were inactivated by •OH solution at concentrations of 0.5 mg/L within 2 min. •OH could induce alteration of shape, the absence of motility and macronucleus dispersion in theronts. A possible explanation was that the macronucleus of C. irritans might be damaged by •OH; as a result, its metabolism and life activities were disturbed. The •OH treatment increased the survival rate of E. coioides challenged with C. irritans from 64.7 ± 8.0% (mean ± SD) to 100% and reduced their infection intensity significantly. Stress response biomarkers such as malonaldehyde, glutathione, glutathione peroxidase, superoxide dismutase (SOD) and catalase levels in the gills of E. coioides at different time points were analysed. The SOD activity in the •OH group first decreased and then recovered to the initial level at the end of the experiment. The other stress response biomarkers had no significant difference from that in the uninfected control group after •OH treatment. Additionally, the gill of E. coioides in the •OH group exhibited slight and reversible transformation compared with the uninfected control group. Compared with •OH treatment, chlorine dioxide and formalin treatment reduced the survival rate, induced oxidative damage and changed the histological gill structure in E. coioides. In conclusion, •OH could be applied effectively to control C. irritans infection without affecting the normal physiological condition of E. coioides.


Assuntos
Bass , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Animais , Cilióforos/fisiologia , Infecções por Cilióforos/metabolismo , Doenças dos Peixes/metabolismo , Superóxido Dismutase , Proteínas de Peixes/metabolismo
18.
J Fish Dis ; 46(3): 181-188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36453691

RESUMO

Copper alloy sheets have been shown to prevent cryptocaryoniasis. Therefore, we studied the potential efficiency of copper alloy mesh (CAM) in aquaculture tanks to prevent cryptocaryoniasis outbreaks. The effectivenesses of CAM against the tomont stage of Cryptocaryon irritans and in protecting fish from cryptocaryoniasis were tested both in vitro and in vivo. The mortality rate of C. irritans tomonts increased as the contact time with CAM rose and peaked at 70 min (100% of mortality). Morphological changes were observed such as the shrinking of the protoplasm of the treated tomonts, resulting in a larger gap between the cytoplasm and the cyst wall. Mitochondrial dysfunction due to shrinkage in the inner portion, outer and inner mitochondrial membrane damage and cytoplasmic vacuolation was revealed by ultrastructural analysis. The use of CAM effectively preventing reinfection was also provided. In comparison with group B (infected fish without CAM), both groups A (uninfected fish as a control group) and C (infected fish treated with CAM) had a 100% survival rate until the end of the trial. CAM has the same anticryptocaryoniasis effect as copper alloy sheets but is more advantageous due to its lightweight, reduced labor cost and lower purchase cost. It is noticeable that CAM exposure also prevents the excessive accumulation of copper ions in aquaculture sea water.


Assuntos
Anti-Infecciosos , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/parasitologia , Antiparasitários , Cobre , Ligas , Telas Cirúrgicas , Doenças dos Peixes/parasitologia , Aquicultura , Peixes , Perciformes/parasitologia
19.
PLoS One ; 17(10): e0276895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301982

RESUMO

Marker-assisted selective breeding of fish with higher levels of resistance towards specific pathogens may improve fish health, but the impact of host genotype on susceptibility to multiple pathogen infections is still poorly investigated. This study examined the resistance in rainbow trout Oncorhynchus mykiss towards infection with the eye fluke Diplostomum pseudospathaceum. We used genetically selected rainbow trout, carrying SNPs associated with resistance towards the parasitic ciliate Ichthyophthirius multifiliis, and exposed the fish to eye fluke cercariae. We showed that fish partly resistant to I. multifiliis were more susceptible to eye fluke invasion. The expression of immune relevant genes (encoding innate and adaptive factors) was also affected as these genotypes responded less strongly to a secondary fluke infection. The complexity of genome architecture in disease resistance towards multiple pathogens is discussed.


Assuntos
Doenças dos Peixes , Hymenostomatida , Oncorhynchus mykiss , Trematódeos , Infecções por Trematódeos , Animais , Doenças dos Peixes/parasitologia , Trematódeos/genética , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia
20.
Front Immunol ; 13: 956478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119096

RESUMO

Ichthyophthirius multifiliis, a ciliated parasite causing ichthyophthiriasis (white spot disease) in freshwater fishes, results in significant economic loss to the aquaculture sector. One of the important predisposing factors for ichthyophthiriasis is low water temperature (i.e., below 20°C), which affects the health and makes freshwater fishes more susceptible to parasitic infections. During ichthyophthiriasis, fishes are stressed and acute immune reactions are compromised, which enables the aquatic bacterial pathogens to simultaneously infect the host and increase the severity of disease. In the present work, we aimed to understand the parasite-bacteria co-infection mechanism in fish. Later, Curcuma longa (turmeric) essential oil was used as a promising management strategy to improve immunity and control co-infections in fish. A natural outbreak of I. multifiliis was reported (validated by 16S rRNA PCR and sequencing method) in Pangasianodon hypophthalmus from a culture facility of ICAR-CIFRI, India. The fish showed clinical signs including hemorrhage, ulcer, discoloration, and redness in the body surface. Further microbiological analysis revealed that Aeromonas hydrophila was associated (validated by 16S rRNA PCR and sequencing method) with the infection and mortality of P. hypophthalmus, confirmed by hemolysin and survival assay. This created a scenario of co-infections, where both infectious agents are active together, causing ichthyophthiriasis and motile Aeromonas septicemia (MAS) in P. hypophthalmus. Interestingly, turmeric oil supplementation induced protective immunity in P. hypophthalmus against the co-infection condition. The study showed that P. hypophthalmus fingerlings supplemented with turmeric oil, at an optimum concentration (10 ppm), exhibited significantly increased survival against co-infection. The optimum concentration induced anti-stress and antioxidative response in fingerlings, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) in treated animals as compared with the controls. Furthermore, the study indicated that supplementation of turmeric oil increases both non-specific and specific immune response, and significantly higher values of immune genes (interleukin-1ß, transferrin, and C3), HSP70, HSP90, and IgM were observed in P. hypophthalmus treatment groups. Our findings suggest that C. longa (turmeric) oil modulates stress, antioxidant, and immunological responses, probably contributing to enhanced protection in P. hypophthalmus. Hence, the application of turmeric oil treatment in aquaculture might become a management strategy to control co-infections in fishes. However, this hypothesis needs further validation.


Assuntos
Peixes-Gato , Infecções por Cilióforos , Coinfecção , Doenças dos Peixes , Hymenostomatida , Óleos Voláteis , Aeromonas hydrophila , Animais , Antioxidantes/uso terapêutico , Catalase , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Curcuma , Surtos de Doenças , Proteínas Hemolisinas , Hidrocortisona/uso terapêutico , Imunoglobulina M/uso terapêutico , Interleucina-1beta , Complexo Ferro-Dextran/uso terapêutico , Óleos Voláteis/farmacologia , RNA Ribossômico 16S , Superóxido Dismutase , Transferrinas/uso terapêutico , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...