Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.668
Filtrar
1.
Sci Rep ; 14(1): 18061, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103373

RESUMO

Interjurisdictional migrations lead to seasonally changing patterns of exploitation risk, emphasizing the importance of spatially explicit approaches to fishery management. Understanding how risk changes along a migration route supports time-area based fishery management, but quantifying risk can be complicated when multiple fishing methods are geographically segregated and when bycatch species are considered. Further, habitat selection in dynamic environments can influence migration behavior, interacting with other management objectives such as water quality and habitat restoration. As a case study, we examined a novel acoustic telemetry data set for Lake Whitefish in Lake Erie, where they migrate through multiple spatial management units that are variably affected by seasonal hypoxia and host a variety of fisheries. Combining telemetry results with fishery catch and water quality monitoring, we demonstrate three exploitation risk scenarios: (i) high risk due to high residency and high catch, (ii) high risk due to high residency in time-areas with moderate catch, and (iii) low risk due to residency in time-areas with low catch. Interestingly, occupation of low risk refugia was increased by the development of hypoxia in adjacent areas. Consequently, fishery management goals to sustainably manage other target species may be directly and indirectly linked to water quality management goals through Lake Whitefish.


Assuntos
Migração Animal , Pesqueiros , Lagos , Salmonidae , Animais , Migração Animal/fisiologia , Salmonidae/fisiologia , Ecossistema , Qualidade da Água , Estações do Ano , Conservação dos Recursos Naturais/métodos , Telemetria , Hipóxia
2.
Commun Biol ; 7(1): 978, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134631

RESUMO

The evolutionary histories of adaptive radiations can be marked by dramatic demographic fluctuations. However, the demographic histories of ecologically-linked co-diversifying lineages remain understudied. The Laurentian Great Lakes provide a unique system of two such radiations that are dispersed across depth gradients with a predator-prey relationship. We show that the North American Coregonus species complex ("ciscoes") radiated rapidly prior to the Last Glacial Maximum (80-90 kya), a globally warm period, followed by rapid expansion in population size. Similar patterns of demographic expansion were observed in the predator species, Lake Charr (Salvelinus namaycush), following a brief time lag, which we hypothesize was driven by predator-prey dynamics. Diversification of prey into deep water created ecological opportunities for the predators, facilitating their demographic expansion, which is consistent with an upward adaptive radiation cascade. This study provides a new timeline and environmental context for the origin of the Laurentian Great Lakes fish fauna, and firmly establishes this system as drivers of ecological diversification and rapid speciation through cyclical glaciation.


Assuntos
Lagos , Animais , Great Lakes Region , Peixes/classificação , Peixes/fisiologia , Salmonidae/fisiologia , Salmonidae/genética , Evolução Biológica , Truta/fisiologia , Especiação Genética
3.
Sci Total Environ ; 946: 174367, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955267

RESUMO

Infectious diseases stem from disrupted interactions among hosts, parasites, and the environment. Both abiotic and biotic factors can influence infection outcomes by shaping the abundance of a parasite's infective stages, as well as the host's ability to fight infection. However, disentangling these mechanisms within natural ecosystems remains challenging. Here, combining environmental DNA analysis and niche modelling at a regional scale, we uncovered the biotic and abiotic drivers of an infectious disease of salmonid fish, triggered by the parasite Tetracapsuloides bryosalmonae. We found that the occurrence and abundance of the parasite in the water-i.e., the propagule pressure- were mainly correlated to the abundances of its two primary hosts, the bryozoan Fredericella sultana and the fish Salmo trutta, but poorly to local abiotic environmental stressors. In contrast, the occurrence and abundance of parasites within fish hosts-i.e., proxies for disease emergence-were closely linked to environmental stressors (water temperature, agricultural activities, dams), and to a lesser extent to parasite propagule pressure. These results suggest that pathogen distribution alone cannot predict the risk of disease in wildlife, and that local anthropogenic stressors may play a pivotal role in disease emergence among wild host populations, likely by modulating the hosts' immune response. Our study sheds light on the intricate interplay between biotic and abiotic factors in shaping pathogen distribution and raises concerns about the effects of global change on pathogen emergence.


Assuntos
Doenças dos Peixes , Animais , Doenças dos Peixes/parasitologia , Estresse Fisiológico , Interações Hospedeiro-Patógeno , Interações Hospedeiro-Parasita , DNA Ambiental , Salmonidae , Ecossistema , Myxozoa/fisiologia
4.
Biol Lett ; 20(7): 20240065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016002

RESUMO

Nematomorph parasites manipulate terrestrial arthropods to enter streams where the parasites reproduce. These manipulated arthropods become a substantial prey subsidy for stream salmonids, causing cross-ecosystem energy flow. Diverse nematomorph-arthropod associations underlie the energy flow, but it remains unknown whether they can mediate the magnitude and temporal attributes of the energy flow. Here, we investigated whether distinct phylogenetic groups of nematomorphs manipulate different arthropod hosts and mediate seasonal prey subsidy for stream salmonids. The results of our molecular-based diagnoses show that Gordionus and Gordius nematomorphs infected ground beetle and orthopteran hosts, respectively. The presumable ground beetle hosts subsidized salmonid individuals in spring, whereas the presumable orthopteran hosts did so in autumn. Maintaining the two distinct nematomorph-arthropod associations thus resulted in the parasite-mediated prey subsidy in both spring and autumn in the study streams. Manipulative parasites are common, and often associated with a range of host lineages, suggesting that similar effects of phylogenetic variation in host-parasite associations on energy flow might be widespread in nature.


Assuntos
Ecossistema , Interações Hospedeiro-Parasita , Estações do Ano , Animais , Salmonidae/parasitologia , Filogenia , Helmintos/fisiologia , Besouros/parasitologia , Besouros/fisiologia , Rios
5.
Genetica ; 152(2-3): 71-81, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888686

RESUMO

Freshwater ecosystems are among the most endangered ecosystems worldwide. While numerous taxa are on the verge of extinction as a result of global changes and direct or indirect anthropogenic activity, genomic and transcriptomic resources represent a key tool for comprehending species' adaptability and serve as the foundation for conservation initiatives. The Loire grayling, Thymallus ligericus, is a freshwater European salmonid endemic to the upper Loire River basin. The species is comprised of fragmented populations that are dispersed over a small area and it has been identified as a vulnerable species. Here, we provide a multi-tissue de novo transcriptome assembly of T. ligericus. The completeness and integrity of the transcriptome were assessed before and after redundancy removal with lineage-specific libraries from Eukaryota, Metazoa, Vertebrata, and Actinopterygii. Relative gene expression was assessed for each of the analyzed tissues, using the de novo assembled transcriptome and a genome-based analysis using the available T. thymallus genome as a reference. The final assembly, with a contig N50 of 1221 and Benchmarking Universal Single-Copy Orthologs (BUSCO) scores above 94%, is made accessible along with structural and functional annotations and relative gene expression of the five tissues (NCBI SRA and FigShare databases). This is the first transcriptomic resource for this species, which provides a foundation for future research on this and other salmonid species that are increasingly exposed to environmental stressors.


Assuntos
Salmonidae , Transcriptoma , Animais , Salmonidae/genética , Água Doce , Anotação de Sequência Molecular , Perfilação da Expressão Gênica , Espécies em Perigo de Extinção , Genoma
6.
Fish Shellfish Immunol ; 151: 109667, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830520

RESUMO

For effective restoration, conservation of Ussruri whitefish Coregonus ussuriensis Berg and coping with global climate change, effects of environmental temperature on Ussruri whitefish urgently need to be explored. In current study, the effects of different acclimation temperatures on the growth, digestive physiology, antioxidant ability, liver transcriptional responses and intestinal microflora patterns of Ussruri whitefish were investigated. Ussruri whitefish (15.20 g ± 1.23 g) were reared for 42 days under different acclimation temperatures, i.e., 10, 13, 16, 19, 22 and 25 °C, respectively. Result first determined 28 °C as the semi-lethal temperature in order to design the temperature gradient test. Highest main gain rate (MGR) and specific growth rate (SGR) were observed in fish group having acclimation temperature of 19 °C. Significantly decrease (P < 0.05) in triglyceride (TG) content appeared at 19 °C as compared to the 10 °C and 13 °C temperature groups. 19 °C notablely increased protease activities of stomach and intestine and intestinal lipase and amylase activities. 19 °C group obtained the highest activities of chloramphnicol acetyltransferase (CAT) and total antioxidant capacity (T-AOC) and higher activities of superoxide dismutase (SOD). The intestinal microflora composition was most conducive to maintaining overall intestinal health when the temperature was 19 °C, compared to 10 °C and 25 °C. Ussruri whitefish exposed to 10 °C and 25 °C possessed the lower Lactobacillus abundance compared to exposure to 19 °C. Temperature down to 10 °C or up to 25 °C, respectively, triggered cold stress and heat stress, which leading to impairment in intestinal digestion, liver antioxidant capacity and intestinal microflora structure. Liver transcriptome response to 10 °C, 19 °C and 25 °C revealed that Ussruri whitefish might require the initiation of endoplasmic reticulum stress to correct protein damage from cold-temperature and high-temperature stress, and it was speculated that DNAJB11 could be regarded as a biomarker of cold stress response.Based on the quadratic regression analysis of MGR and SGR against temperature, the optimal acclamation temperature were, respectively, 18.0 °C and 18.1 °C. Our findings provide valuable theoretical insights for an in-depth understanding of temperature acclimation mechanisms and laid the foundation for conservation and development of Ussruri whitefish germplasm resources.


Assuntos
Aclimatação , Antioxidantes , Digestão , Microbioma Gastrointestinal , Fígado , Salmonidae , Transcriptoma , Animais , Antioxidantes/metabolismo , Salmonidae/fisiologia , Salmonidae/genética , Temperatura
7.
Parasitol Res ; 123(5): 205, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709381

RESUMO

Between 1898 and 1940, eight human cases of diphyllobothriasis were reported in Argentina, always in recently arrived European immigrants. In 1982, the first autochthonous case was detected, and since then, 33 other autochthonous cases have been reported, totaling 42 cases of human diphyllobothriasis in Argentina before the present study. Our aim is to update the information on diphyllobothriasis in Argentina by identifying specimens from new cases using morphometrical and/or molecular methods. We also aim to assess the epidemiological relevance of this food-borne disease in the country. Anamnestic data were obtained from patients or professionals, along with 26 worms identified using morphometrical (21 samples) and molecular techniques (5 samples). All the patients acquired the infection by consuming freshwater salmonids caught in Andean lakes in Northern Patagonia. Morphometrics and DNA markers of worms were compatible with Dibothriocephalus latus. In total, 68 human cases have been detected in Argentina, 60 of which were autochthonous. The human population living North-western Patagonia, whose lakes are inhabited by salmonids, is increasing. Similarly, the number of other definitive hosts for Dibothriocephalus dendriticus (gulls) and for D. latus (dogs) is also increasing. In addition, salmonid fishing and the habit of consuming home-prepared raw fish dishes are becoming widespread. Therefore, it is to be expected that diphyllobothriasis in Argentina will increase further.


Assuntos
Difilobotríase , Diphyllobothrium , Argentina/epidemiologia , Difilobotríase/epidemiologia , Difilobotríase/parasitologia , Humanos , Animais , Masculino , Feminino , Diphyllobothrium/genética , Diphyllobothrium/isolamento & purificação , Diphyllobothrium/classificação , Adulto , Pessoa de Meia-Idade , Idoso , Salmonidae/parasitologia , Doenças Transmitidas por Alimentos/parasitologia , Doenças Transmitidas por Alimentos/epidemiologia , Adulto Jovem , História do Século XX , História do Século XIX
8.
Int J Parasitol ; 54(8-9): 463-474, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609075

RESUMO

Parasitic salmon lice (Lepeophtheirus salmonis) are a constraint to the sustainable growth of salmonids in open net pens, and this issue has caused production to level off in recent years in the most aquaculture-intensive areas of Norway. The maximum allowed biomass at a regional level is regulated by using the so-called "traffic light" system, where salmon louse-induced mortality of migrating wild salmon post-smolts is evaluated against set targets. As a case study, we have investigated how a specific aquaculture-intensive area can reduce its louse levels sufficiently to achieve a low impact on wild salmon. Analyses of the output from a virtual post-smolt model that uses data on the reported number of salmon lice in fish farms as key input data and estimates the salmon louse-induced mortality of wild out-migrating Atlantic salmon post-smolts, suggested that female louse abundance on the local farms must be halved in spring to reach the goal implied by the traffic light system. The outcome of a modelling scenario simulating a proposed new plan for coordinated production and fallowing proved beneficial, with an overall reduction in louse infestations and treatment efforts. The interannual variability in louse abundance in spring, however, increased for this scenario, implying unacceptably high louse abundance when many farms were in their second production year. We then combined the scenario with coordinated production with other louse control measures. Only measures that reduced the density of farmed salmonids in open cages in the study area resulted in reductions in salmon louse infestations to acceptable levels. This could be achieved either by stocking with larger fish to reduce exposure time or by reducing fish numbers, e.g. by producing in closed units.


Assuntos
Aquicultura , Copépodes , Doenças dos Peixes , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/prevenção & controle , Copépodes/fisiologia , Aquicultura/métodos , Noruega , Feminino , Ectoparasitoses/veterinária , Ectoparasitoses/parasitologia , Ectoparasitoses/prevenção & controle , Salmo salar/parasitologia , Salmonidae/parasitologia , Salmão/parasitologia
9.
Sci Rep ; 14(1): 9651, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671194

RESUMO

In contrast to most fishes, salmonids exhibit the unique ability to hold their eggs for several days after ovulation without significant loss of viability. During this period, eggs are held in the body cavity in a biological fluid, the coelomic fluid (CF) that is responsible for preserving egg viability. To identify CF proteins responsible for preserving egg viability, a proteomic comparison was performed using 3 salmonid species and 3 non-salmonid species to identify salmonid-specific highly abundant proteins. In parallel, rainbow trout CF fractions were purified and used in a biological test to estimate their egg viability preservation potential. The most biologically active CF fractions were then subjected to mass spectrometry analysis. We identified 50 proteins overabundant in salmonids and present in analytical fractions with high egg viability preservation potential. The identity of these proteins illuminates the biological processes participating in egg viability preservation. Among identified proteins of interest, the ovarian-specific expression and abundance in CF at ovulation of N-acetylneuraminic acid synthase a (Nansa) suggest a previously unsuspected role. We show that salmonid CF is a complex biological fluid containing a diversity of proteins related to immunity, calcium binding, lipid metabolism, proteolysis, extracellular matrix and sialic acid metabolic pathway that are collectively responsible for preserving egg viability.


Assuntos
Ovário , Salmonidae , Animais , Feminino , Ovário/metabolismo , Salmonidae/metabolismo , Óvulo/metabolismo , Proteínas de Peixes/metabolismo , Proteômica/métodos , Líquidos Corporais/metabolismo , Oncorhynchus mykiss/metabolismo
10.
Front Immunol ; 15: 1306458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601152

RESUMO

Microbial management is central to aquaculture's efficiency. Pediococcus acidilactici MA18/5M has shown promising results promoting growth, modulation of the immune response, and disease resistance in many fishes. However, the mechanisms through which this strain confers health benefits in fish are poorly understood, particularly in Pacific salmonid models. Briefly, the aims of this study were to i) assess the protective effects of P. acidilactici MA18/5M by examining gut barrier function and the expression of tight junction (TJ) and immune genes in vitro and in vivo, and ii) to determine the protective effects of this strain against a common saltwater pathogen, Vibrio anguillarum J382. An in vitro model of the salmonid gut was employed utilizing the cell line RTgutGC. Barrier formation and integrity assessed by TEER measurements in RTgutGC, showed a significant decrease in resistance in cells exposed only to V. anguillarum J382 for 24 h, but pre-treatment with P. acidilactici MA18/5M for 48 h mitigated these effects. While P. acidilactici MA18/5M did not significantly upregulate tight junction and immune molecules, pre-treatment with this strain protected against pathogen-induced insults to the gut barrier. In particular, the expression of ocldn was significantly induced by V. anguillarum J382, suggesting that this molecule might play a role in the host response against this pathogen. To corroborate these observations in live fish, the effects of P. acidilactici MA18/5M was evaluated in Chinook salmon reared in real aquaculture conditions. Supplementation with P. acidilactici MA18/5M had no effect on Chinook salmon growth parameters after 10 weeks. Interestingly, histopathological results did not show alterations associated with P. acidilactici MA18/5M supplementation, indicating that this strain is safe to be used in the industry. Finally, the expression pattern of transcripts encoding TJ and immune genes in all the treatments suggest that variation in expression is more likely to be due to developmental processes rather than P. acidilactici MA18/5M supplementation. Overall, our results showed that P. acidilactici MA18/5M is a safe strain for use in fish production, however, to assess the effects on growth and immune response previously observed in other salmonid species, an assessment in adult fish is needed.


Assuntos
Pediococcus acidilactici , Probióticos , Salmonidae , Animais , Probióticos/farmacologia , Dieta , Resistência à Doença
11.
Fish Shellfish Immunol ; 148: 109475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447781

RESUMO

The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and ß, were identified and characterized in H. bleekeri. Both TCR α and TCR ß have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR ß. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and ß expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and ß in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and ß, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Salmonidae , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Polimorfismo Genético , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Salmonidae/genética
12.
Syst Parasitol ; 101(2): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436733

RESUMO

Discocotyle sagittata (Leuckart, 1842) (Monogenea: Discocotylidae) is redescribed, based on specimens collected from the type host, Salmo trutta Linnaeus, from the type locality, Freiburg, Germany, supplemented with specimens from S. trutta and rainbow trout, Oncorhynchus mykiss (Walbaum) reared in an Austrian aquarium. The diagnosis of the genus Discocotyle Diesing, 1850 is emended. Discocotyle ciray n. sp. is described, based on immature, preadult and adult specimens from the salmonid, Parahucho perryi (Brevoort) at Eniwa, Hokkaido, Japan. Adult specimens of the new species were about twice as large as those of D. sagittata from S. trutta. When the type specimens of D. ciray n. sp. were examined together with museum specimens from P. perryi at Tsurui, Hokkaido, the body and clamp sizes were positively correlated to the host size. Their measurements from a smaller P. perryi at Tsurui overlapped with those of D. sagittata, showing that these size differences were not suitable differentiating keys. Discocotyle ciray n. sp. can be separated from D. sagittata by the morphologies of the female genital system (relatively anteriorly positioned ovary, short joint vaginal duct and much more strongly winding uterus). The genetic distances of COI mtDNA sequence between D. ciray n. sp. and D. sagittata were 18.0-18.6%. These remarkable genetic divergences also supported the distinct taxonomic status of D. ciray n. sp.


Assuntos
Salmonidae , Trematódeos , Feminino , Animais , Humanos , Japão , Especificidade da Espécie , DNA Mitocondrial
13.
J Exp Biol ; 227(4)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380449

RESUMO

Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.


Assuntos
Salmonidae , Animais , Ecossistema , Oxigênio , Brânquias , Temperatura , Truta , Água , Tamanho Corporal
14.
Prev Vet Med ; 224: 106134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325114

RESUMO

The effective control of ectoparasitic salmon lice, Lepeophtheirus salmonis, in fish farms is challenged by the salmon lice having developed resistance towards several antiparasitic drugs and by the effectiveness of non-medicinal treatments being limited by considerations of fish welfare. When new antiparasitics are introduced to the market, these should be used sparingly to slow resistance development. Using a population model for salmon lice parameterised for salmonid fish farms in Norway, we quantified how reduced treatment effectiveness influences treatment frequency and lice abundance. Furthermore, we investigated when in the production cycle a highly effective lice treatment leads to the largest reduction in the total number of treatments, mean lice abundance and lice larvae production. Results showed that reductions in treatment effectiveness to lower than 50% led to the steepest increases in treatment frequency and mean lice abundance, as well as to increased risk that lice abundance increased beyond control. The timing of the most effective treatment had only moderate effects on the total treatment need and the mean number of adult female lice through the production cycle, but large effect on the production of lice larvae in spring. These findings imply that farmers can optimise the timing of the most effective treatment to reduce the release of lice larvae in the period of year when wild salmonids are in coastal waters, without compromising total treatment need or mean lice levels.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Salmonidae , Animais , Feminino , Pesqueiros , Antiparasitários/uso terapêutico , Larva , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/epidemiologia , Salmão/parasitologia , Aquicultura/métodos
15.
Anim Reprod Sci ; 262: 107423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306853

RESUMO

Sperm adhering to glass slides is one of the main problems during fish sperm motility analyses with CASA systems. To mitigate this, albumin is the supplement added most frequently to activating solutions. However, there is no data on the use of supplements other than albumin (in various concentrations) in analyses of European whitefish (Coregonus lavaretus) sperm motility. This issue was investigated in the presented research using three anti-adhesive supplements (albumin, casein, Pluronic F-127) that were added to Billard solution (BS: 20 mM Tris, 1 mM CaCl2, 154 mM NaCl, 30 mM glycine at pH 9.0) at different concentrations (0.0; 0.1; 0.2; 0.5; 1.0; 2.0%). It was noted that the addition of the lowest concentration (0.1%) of albumin, casein, or the pluronic to BS had a significant effect on the motility and kinetic parameters of whitefish sperm compared to pure BS. BS supplemented with 0.2-0.5% albumin was the most appropriate variant used for whitefish sperm motility activation in the present experiment. BS supplemented with the pluronic at 1.0-2.0% concentrations resulted in significantly higher values of almost all CASA parameters compared to casein at the same concentrations. Moreover, CASA parameters determined in this variant of the pluronic (1.0-2.0%) were similar to those when BS was supplemented with the same albumin concentrations. This indicated that instead of albumin, the pluronic at higher concentrations in BS might be used to analyze whitefish sperm motility.


Assuntos
Adesivos , Salmonidae , Masculino , Animais , Adesivos/farmacologia , Motilidade dos Espermatozoides , Caseínas/farmacologia , Poloxâmero/farmacologia , Sêmen , Salmonidae/fisiologia , Albuminas/farmacologia
16.
Genome Biol Evol ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271269

RESUMO

Phenotypic diversification is classically associated with genetic differentiation and gene expression variation. However, increasing evidence suggests that DNA methylation is involved in evolutionary processes due to its phenotypic and transcriptional effects. Methylation can increase mutagenesis and could lead to increased genetic divergence between populations experiencing different environmental conditions for many generations, though there has been minimal empirical research on epigenetically induced mutagenesis in diversification and speciation. Whitefish, freshwater members of the salmonid family, are excellent systems to study phenotypic diversification and speciation due to the repeated divergence of benthic-limnetic species pairs serving as natural replicates. Here we investigate whole genome genetic and epigenetic differentiation between sympatric benthic-limnetic species pairs in lake and European whitefish (Coregonus clupeaformis and Coregonus lavaretus) from four lakes (N = 64). We found considerable, albeit variable, genetic and epigenetic differences between species pairs. All SNP types were enriched at CpG sites supporting the mutagenic nature of DNA methylation, though C>T SNPs were most common. We also found an enrichment of overlaps between outlier SNPs with the 5% highest FST between species and differentially methylated loci. This could possibly represent differentially methylated sites that have caused divergent genetic mutations between species, or divergent selection leading to both genetic and epigenetic variation at these sites. Our results support the hypothesis that DNA methylation contributes to phenotypic divergence and mutagenesis during whitefish speciation.


Assuntos
Especiação Genética , Salmonidae , Animais , Salmonidae/genética , Evolução Biológica , Lagos , Epigênese Genética
17.
Environ Manage ; 73(1): 213-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172273

RESUMO

Habitat degradation is one of the major reasons for freshwater species decline. Hydrogeomorphological processes (such as sediment transport, bank erosion, and flooding) operate at the catchment scale and determine habitat features in river reaches. However, habitat quality indices and restoration for freshwater fish species are often implemented at small spatial scales of a few hundred metres. The Morphological Quality Index (MQI) considers fluvial processes at larger scales as well as channel forms, human impacts, and historical changes, but few studies have assessed its relevance for ecosystem health. We investigated relationships between the MQI, habitat quality (using the Qualitative Habitat Evaluation Index, QHEI), land cover, and fish metrics (number of fish species, index of biotic integrity (IBI), and trout biomass) in 26 salmonid streams in Aotearoa New Zealand and Southern Ontario, Canada. We found a significant correlation between the MQI and QHEI, and both metrics were correlated with urban and native forest proportion in the catchment. However, we found no relation between the MQI and the proportion of agricultural land in the catchment, while the QHEI was correlated with agricultural land in the riparian zone, highlighting the importance of vegetated riparian buffers in providing fish habitat. Establishing a strong correlation with fish metrics remains challenging. Nevertheless, a modified MQI targeting ecological health could be used as an effective management tool for aquatic conservation.


Assuntos
Ecossistema , Salmonidae , Animais , Peixes , Nova Zelândia , Ontário , Rios
18.
J Exp Biol ; 227(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235572

RESUMO

Poleward winters commonly expose animals, including fish, to frigid temperatures and low food availability. Fishes that remain active over winter must therefore balance trade-offs between conserving energy and maintaining physiological performance in the cold, yet the extent and underlying mechanisms of these trade-offs are not well understood. We investigated the metabolic plasticity of brook char (Salvelinus fontinalis), a temperate salmonid, from the biochemical to whole-animal level in response to cold and food deprivation. Acute cooling (1°C day-1) from 14°C to 2°C had no effect on food consumption but reduced activity by 77%. We then assessed metabolic performance and demand over 90 days with exposure to warm (8°C) or cold winter (2°C) temperatures while fish were fed or starved. Resting metabolic rate (RMR) decreased substantially during initial cooling from 8°C to 2°C (Q10=4.2-4.5) but brook char exhibited remarkable thermal compensation during acclimation (Q10=1.4-1.6). Conversely, RMR was substantially lower (40-48%) in starved fish, conserving energy. Thus, the absolute magnitude of thermal plasticity may be masked or modified under food restriction. This reduction in RMR was associated with atrophy and decreases in in vivo protein synthesis rates, primarily in non-essential tissues. Remarkably, food deprivation had no effect on maximum oxygen uptake rates and thus aerobic capacity, supporting the notion that metabolic capacity can be decoupled from RMR in certain contexts. Overall, our study highlights the multi-faceted energetic flexibility of Salvelinus spp. that likely contributes to their success in harsh and variable environments and may be emblematic of winter-active fishes more broadly.


Assuntos
Salmonidae , Animais , Consumo de Oxigênio/fisiologia , Oxigênio , Temperatura , Aclimatação/fisiologia , Truta/fisiologia
19.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180085

RESUMO

Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.


Assuntos
Salmonidae , Animais , Especialização , Rim , Replicação Viral
20.
Prev Vet Med ; 224: 106095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232517

RESUMO

Pancreas Disease (PD) is a viral disease that affects Atlantic salmon (Salmo salar) in Norwegian, Scottish and Irish aquaculture. It is caused by salmonid alphavirus (SAV) and represents a significant problem in salmonid farming. Infection with SAV leads to reduced growth, mortality, product downgrading, and has a significant financial impact for the farms. The overall aim of this study is to evaluate the effect of various factors on the transmission of SAV and to create a predictive model capable of providing an early warning system for salmon farms within the Norwegian waters. Using a combination of publicly available databases, specifically BarentsWatch, and privately held PCR analyses a feature set consisting of 11 unique features was created based on the input parameters of the databases. An ensemble model was developed based on this feature set using XG-Boost, Ada-Boost, Random Forest and a Multilayer Perceptron. It was possible to successfully predict SAV transmission with 94.4% accuracy. Moreover, it was possible to predict SAV transmission 8 weeks in advance of a 'PD registration' at individual aquaculture salmon farming sites. Important predictors included well boat movement, environmental factors, proximity to sites with a 'PD registration' and seasonality.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Pancreatopatias , Salmo salar , Salmonidae , Animais , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/veterinária , Aquicultura , Pancreatopatias/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA