Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 768
Filtrar
1.
Nat Commun ; 15(1): 3145, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605005

RESUMO

Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αßT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.


Assuntos
Longevidade , Neoplasias , Humanos , Animais , Camundongos , Longevidade/fisiologia , Neoplasias/genética , Subpopulações de Linfócitos T , Células Matadoras Naturais , Ratos-Toupeira/fisiologia
2.
Front Endocrinol (Lausanne) ; 15: 1329083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567302

RESUMO

Introduction: About 10% of all rodent species have evolved a subterranean way of life, although life in subterranean burrows is associated with harsh environmental conditions that would be lethal to most animals living above ground. Two key adaptations for survival in subterranean habitats are low resting metabolic rate (RMR) and core body temperature (Tb). However, the upstream regulation of these traits was unknown thus far. Previously, we have reported exceptionally low concentrations of the thyroid hormone (TH) thyroxine (T4), and peculiarities in TH regulating mechanisms in two African mole-rat species, the naked mole-rat and the Ansell's mole-rat. Methods: In the present study, we treated Ansell's mole-rats with T4 for four weeks and analyzed treatment effects on the tissue and whole organism level with focus on metabolism and thermoregulation. Results: We found RMR to be upregulated by T4 treatment but not to the extent that was expected based on serum T4 concentrations. Our data point towards an extraordinary capability of Ansell's mole-rats to effectively downregulate TH signaling at tissue level despite very high serum TH concentrations, which most likely explains the observed effects on RMR. On the other hand, body weight was decreased in T4-treated animals and Tb was upregulated by T4 treatment. Moreover, we found indications of the hypothalamus-pituitary-adrenal axis potentially influencing the treatment effects. Conclusion: Taken together, we provide the first experimental evidence that the low serum T4 concentrations of Ansell's mole-rats serve as an upstream regulator of low RMR and Tb. Thus, our study contributes to a better understanding of the ecophysiological evolution of the subterranean lifestyle in African mole-rats.


Assuntos
Ratos-Toupeira , Tiroxina , Animais , Ratos-Toupeira/metabolismo , Regulação da Temperatura Corporal
3.
Anat Histol Embryol ; 53(3): e13034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563613

RESUMO

The ultrastructure of the olfactory system of most fossorial rodents remains largely unexplored. This study sought to investigate the functional structure of the olfactory mucosa and olfactory bulb of two species of fossorial rodents that have distinct behaviour and ecology, the East African root rat (RR) and the naked mole rat (NMR). Transmission electron microscopy and scanning electron microscopy were employed. The basic ultrastructural design of the olfactory system of the two species was largely comparable. In both species, the olfactory mucosa comprised an olfactory epithelium and an underlying lamina propria. The olfactory epithelium revealed olfactory knobs, cilia and microvilli apically and sustentancular cells, olfactory receptor neurons and basal cells in the upper, middle and basal zones, respectively. The lamina propria was constituted by Bowman's glands, olfactory nerve bundles and vasculature supported by loose connective tissue. Within the olfactory bulb, intracellular and extracellular structures including cell organelles, axons and dendrites were elucidated. Notable species differences were observed in the basal zone of the olfactory epithelium and on the luminal surface of the olfactory mucosa. The basal zone of the olfactory epithelium of the RR consisted of a single layer of flattened electron-dense horizontal basal cells while the NMR had juxtaposed electron-dense and electron-lucent heterogenous cells, an occurrence seen as being indicative of quiescent and highly proliferative states of the olfactory epithelia in the two species, respectively. The olfactory epithelial surface of the NMR comprised an elaborate cilia network that intertwined extensively forming loop-like structures whereas in the RR, the surface was rugged and consisted of finger-like processes and irregular masses. With gross and histological studies showing significant differences in the olfactory structures of the two species, these findings are a further manifestation that the olfactory system of the RR and the NMR have evolved differently to reflect their varied olfactory functional needs.


Assuntos
População da África Oriental , Neurônios Receptores Olfatórios , Animais , Humanos , Ratos-Toupeira , Axônios , Cílios
4.
Chronobiol Int ; 41(3): 356-368, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38444071

RESUMO

Light is considered the primary entrainer for mammalian biological rhythms, including locomotor activity (LA). However, mammals experience different environmental and light conditions, which include those predominantly devoid of light stimuli, such as those experienced in subterranean environments. In this study, we investigated what environmental cue (light or ambient temperature (Ta)) is the strongest modulator of circadian rhythms, by using LA as a proxy, in mammals that experience a lifestyle devoid of light stimuli. To address this question, this study exposed a subterranean African mole-rat species, the Damaraland mole-rat (Fukomys damarensis), to six light and Ta cycles in different combinations. Contrary to previous literature, when provided with a reliable light cue, Damaraland mole rats exhibited nocturnal, diurnal, or arrhythmic LA patterns under constant Ta. While under constant darkness and a 24-hour Ta cycle mimicking the burrow environment, all mole-rats were most active during the coolest 12-hour period. This finding suggests that in a subterranean environment, which receives no reliable photic cue, the limited heat dissipation and energy constraints during digging activity experienced by Damaraland mole-rats make Ta a reliable and consistent "time-keeping" variable. More so, when providing a reliable light cue (12 light: 12 dark) to Damaraland mole-rats under a 24-hour Ta cycle, this study presents the first evidence that cycles of Ta affect the LA rhythm of a subterranean mammal more strongly than cycles of light and darkness. Once again, Damaraland mole-rats were more active during the coolest 12-hour period regardless of whether this fell during the light or dark phase. However, conclusive differentiation of entrainment to Ta from that of masking was not achieved in this study, and as such, we have recommended future research avenues to do so.


Assuntos
Ritmo Circadiano , Sinais (Psicologia) , Animais , Fotoperíodo , Temperatura , Ratos-Toupeira
5.
Nat Commun ; 15(1): 2204, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538579

RESUMO

The naked mole-rat Heterocephalus glaber is a eusocial mammal exhibiting extreme longevity (37-year lifespan), extraordinary resistance to hypoxia and absence of cardiovascular disease. To identify the mechanisms behind these exceptional traits, metabolomics and RNAseq of cardiac tissue from naked mole-rats was compared to other African mole-rat genera (Cape, Cape dune, Common, Natal, Mahali, Highveld and Damaraland mole-rats) and evolutionarily divergent mammals (Hottentot golden mole and C57/BL6 mouse). We identify metabolic and genetic adaptations unique to naked mole-rats including elevated glycogen, thus enabling glycolytic ATP generation during cardiac ischemia. Elevated normoxic expression of HIF-1α is observed while downstream hypoxia responsive-genes are down-regulated, suggesting adaptation to low oxygen environments. Naked mole-rat hearts show reduced succinate levels during ischemia compared to C57/BL6 mouse and negligible tissue damage following ischemia-reperfusion injury. These evolutionary traits reflect adaptation to a unique hypoxic and eusocial lifestyle that collectively may contribute to their longevity and health span.


Assuntos
Longevidade , Oxigênio , Animais , Camundongos , Longevidade/genética , Hipóxia/genética , Ratos-Toupeira/genética , Isquemia
6.
Hear Res ; 445: 108994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520899

RESUMO

African mole-rats display highly derived hearing that is characterized by low sensitivity and a narrow auditory range restricted to low frequencies < 10 kHz. Recently, it has been suggested that two species of these rodents do not exhibit distortion product otoacoustic emissions (DPOAE), which was interpreted as evidence for a lack of cochlear amplification. If true, this would make them unique among mammals. However, both theoretical considerations on the generation of DPOAE as well as previously published experimental evidence challenge this assumption. We measured DPOAE and stimulus-frequency otoacoustic emissions (SFOAE) in three species of African mole-rats (Ansell's mole-rat - Fukomys anselli; Mashona mole-rat - Fukomys darlingi; naked mole-rat - Heterocephalus glaber) and found unexceptional otoacoustic emission values. Measurements were complicated by the remarkably long, narrow and curved external ear canals of these animals, for which we provide a morphological description. Both DPOAE and SFOAE displayed the highest amplitudes near 1 kHz, which corresponds to the region of best hearing in all tested species, as well as to the frequency region of the low-frequency acoustic fovea previously described in Ansell's mole-rat. Thus, the cochlea in African mole-rats shares the ability to generate evoked otoacoustic emission with other mammals.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Animais , Emissões Otoacústicas Espontâneas/fisiologia , Cóclea/fisiologia , Audição , Testes Auditivos , Ratos-Toupeira
7.
Mol Phylogenet Evol ; 190: 107958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914032

RESUMO

Species delimitation is a powerful approach to assist taxonomic decisions in challenging taxa where species boundaries are hard to establish. European taxa of the blind mole rats (genus Nannospalax) display small morphological differences and complex chromosomal evolution at a shallow evolutionary divergence level. Previous analyses led to the recognition of 25 'forms' in their distribution area. We provide a comprehensive framework to improve knowledge on the evolutionary history and revise the taxonomy of European blind mole rats based on samples from all but three of the 25 forms. We sequenced two nuclear-encoded genetic regions and the whole mitochondrial cytochrome b gene for phylogenetic tree reconstructions using concatenation and coalescence-based species-tree estimations. The phylogenetic analyses confirmed that Aegean N. insularis belongs to N. superspecies xanthodon, and that it represents the second known species of this superspecies in Europe. Mainland taxa reached Europe from Asia Minor in two colonisation events corresponding to two superspecies-level taxa: N. superspecies monticola (taxon established herewith) reached Europe c. 2.1 million years ago (Mya) and was followed by N. superspecies leucodon (re-defined herewith) c. 1.5 Mya. Species delimitation allowed the clarification of the taxonomic contents of the above superspecies. N. superspecies monticola contains three species geographically confined to the western periphery of the distribution of blind mole rats, whereas N. superspecies leucodon is more speciose with six species and several additional subspecies. The observed geographic pattern hints at a robust peripatric speciation process and rapid chromosomal evolution. The present treatment is thus regarded as the minimum taxonomic content of each lineage, which can be further refined based on other sources of information such as karyological traits, crossbreeding experiments, etc. The species delimitation models also allowed the recognition of a hitherto unnamed blind mole rat taxon from Albania, described here as a new subspecies.


Assuntos
Mamíferos , Ratos-Toupeira , Animais , Filogenia , Ratos-Toupeira/genética , Muridae , Ásia
8.
Nat Commun ; 14(1): 8054, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052795

RESUMO

Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.


Assuntos
Ácido Hialurônico , Neoplasias , Animais , Longevidade/genética , Mamíferos , Ratos-Toupeira/genética , Mutação
9.
Nat Commun ; 14(1): 8484, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123565

RESUMO

The naked mole rat (NMR), Heterocephalus glaber, the longest-living rodent, provides a unique opportunity to explore how evolution has shaped adult stem cell (ASC) activity and tissue function with increasing lifespan. Using cumulative BrdU labelling and a quantitative imaging approach to track intestinal ASCs (Lgr5+) in their native in vivo state, we find an expanded pool of Lgr5+ cells in NMRs, and these cells specifically at the crypt base (Lgr5+CBC) exhibit slower division rates compared to those in short-lived mice but have a similar turnover as human LGR5+CBC cells. Instead of entering quiescence (G0), NMR Lgr5+CBC cells reduce their division rates by prolonging arrest in the G1 and/or G2 phases of the cell cycle. Moreover, we also observe a higher proportion of differentiated cells in NMRs that confer enhanced protection and function to the intestinal mucosa which is able to detect any chemical imbalance in the luminal environment efficiently, triggering a robust pro-apoptotic, anti-proliferative response within the stem/progenitor cell zone.


Assuntos
Células-Tronco Adultas , Longevidade , Camundongos , Humanos , Animais , Mucosa Intestinal/metabolismo , Intestinos , Células-Tronco Adultas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ratos-Toupeira
10.
Sci Rep ; 13(1): 22355, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102304

RESUMO

The African naked mole-rat (Heterocephalus glaber) is an attractive model for cancer and aging research due to its peculiar biological traits, such as unusual long life span and resistance to cancer. The establishment of induced pluripotent stem cells (iPSCs) would be a useful tool for in vitro studies but, in this species, the reprogramming of somatic cells is problematic because of their stable epigenome. Therefore, an alternative approach is the derivation of embryonic stem cells from in vitro-produced embryos. In this study, immature oocytes, opportunistically retrieved from sexually inactive females, underwent first in vitro maturation (IVM) and then in vitro fertilization via piezo-intracytoplasmic sperm injection (ICSI). Injected oocytes were then cultivated with two different approaches: (i) in an in vitro culture and (ii) in an isolated mouse oviduct organ culture system. The second approach led to the development of blastocysts, which were fixed and stained for further analysis.


Assuntos
Neoplasias , Injeções de Esperma Intracitoplásmicas , Animais , Feminino , Masculino , Camundongos , Blastocisto , Fertilização In Vitro , Oócitos , Sêmen , Ratos-Toupeira
11.
Mech Ageing Dev ; 216: 111887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993056

RESUMO

The naked mole-rat (NMR) Heterocephalus glaber (from the Greek/latin words ἕτερος, heteros = divergent, κεφαλή, kephale = head and glabra = hairless) was first described by Rüppell (Fig. 1) and belongs to the Hystricognath (from the Greek words ὕστριξ, hystrix = porcupine and γνάθος, gnathos = jaw) as a suborder of rodents. NMR are characterized by the highest longevity among rodents and reveal a profound cancer resistance. Details of its skin-specific protective and resistance mechanisms against aging and carcinogenesis have so far not been adequately characterized. Recently, our knowledge of NMR skin biology was complemented and expanded by published data using state-of-the art histological and molecular techniques. Here we review and integrate novel published data regarding skin morphology and histology of the aging NMR and the underlying mechanisms at the cellular and molecular level. We relate this data to the longevity of the NMR and its resistance to neoplastic transformation and discuss further open questions to understand its extraordinary longevity. In addition, we will address the exposome, defined as "the total of all non-genetic, endogenous and exogenous environmental influences" on the skin, respiratory tract, stomach, and intestine. Finally, we will discuss in perspective further intriguing possibilities arising from the interaction of skin with other organs.


Assuntos
Neoplasias , Resiliência Psicológica , Animais , Envelhecimento/patologia , Longevidade , Ratos-Toupeira
12.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030702

RESUMO

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Assuntos
Genoma , Ratos-Toupeira , Humanos , Cobaias , Animais , Sintenia , Hibridização in Situ Fluorescente , Cariótipo , Ratos-Toupeira/genética
13.
Genome Biol Evol ; 15(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37831410

RESUMO

Natural selection has shaped a wide range of lifespans across mammals, with a few long-lived species showing negligible signs of ageing. Approaches used to elucidate the genetic mechanisms underlying mammalian longevity usually involve phylogenetic selection tests on candidate genes, detections of convergent amino acid changes in long-lived lineages, analyses of differential gene expression between age cohorts or species, and measurements of age-related epigenetic changes. However, the link between gene duplication and evolution of mammalian longevity has not been widely investigated. Here, we explored the association between gene duplication and mammalian lifespan by analyzing 287 human longevity-associated genes across 37 placental mammals. We estimated that the expansion rate of these genes is eight times higher than their contraction rate across these 37 species. Using phylogenetic approaches, we identified 43 genes whose duplication levels are significantly correlated with longevity quotients (False Discovery Rate (FDR) < 0.05). In particular, the strong correlation observed for four genes (CREBBP, PIK3R1, HELLS, FOXM1) appears to be driven mainly by their high duplication levels in two ageing extremists, the naked mole rat (Heterocephalus glaber) and the greater mouse-eared bat (Myotis myotis). Further sequence and expression analyses suggest that the gene PIK3R1 may have undergone a convergent duplication event, whereby the similar region of its coding sequence was independently duplicated multiple times in both of these long-lived species. Collectively, this study identified several candidate genes whose duplications may underlie the extreme longevity in mammals, and highlighted the potential role of gene duplication in the evolution of mammalian long lifespans.


Assuntos
Quirópteros , Longevidade , Animais , Humanos , Feminino , Gravidez , Longevidade/genética , Eutérios , Filogenia , Placenta , Mamíferos/genética , Quirópteros/genética , Ratos-Toupeira/genética
14.
Chronobiol Int ; 40(8): 1084-1096, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37667495

RESUMO

The Cape mole-rat (Georychus capensis) is a solitary, strictly subterranean rodent that is responsive to light and entrains to photic cues despite having a reduced visual system. Circadian entrainment is maintained throughout life, but age can alter the amplitude of the response and re-entrainment time. Mole-rats are long-lived for their size which raises questions regarding the robustness of their circadian rhythms and how impacts their locomotor activity rhythms. The locomotor activity rhythms of juvenile and adult Cape mole-rats were investigated. They were exposed to pre-experimental and post-experimental control cycles under fluorescent lights, six 12 h light:12 h dark cycles of decreasing intensities and a constant dark cycle (DD). All animals exhibited more activity during the dark phases of all light regimes. Juveniles were more active than adults and displayed more variable activity during both the light and dark phases. Adults exhibited relatively stable levels of activity under all experimental conditions, whereas juvenile activity decreased as the light intensity was reduced. The amplitude of Cape mole-rat rhythms was consistently low, but similar across light regimes and between adults and juveniles. Cape mole-rats have functional circadian systems, are primarily nocturnal and respond differentially to light intensity depending on their age. Light intensity does not affect the locomotor activity responses of Cape mole-rats in a predictable manner, and could indicate more complex interactions with light wavelengths. The circadian systems of juveniles appear to be more sensitive than those of adults, although the mechanism of the light response remains unclear.


Assuntos
Ritmo Circadiano , Ratos-Toupeira , Animais , Sinais (Psicologia) , Luz , Locomoção
15.
Cell Rep ; 42(9): 113130, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708026

RESUMO

The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.


Assuntos
Estresse do Retículo Endoplasmático , Longevidade , Animais , Longevidade/fisiologia , Resposta a Proteínas não Dobradas , Transcriptoma , Ratos-Toupeira
16.
J Exp Biol ; 226(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694288

RESUMO

Fossorial Damaraland mole-rats (Fukomys damarensis) mount a robust hypoxic metabolic response (HMR) but a blunted hypoxic ventilatory response (HVR) to acute hypoxia. Although these reflex physiological responses have been described previously, the underlying signalling pathways are entirely unknown. Of particular interest are contributions from γ-aminobutyric acid (GABA), which is the primary inhibitory neurotransmitter in the nervous system of most adult mammals, and adenosine, the accumulation of which increases during hypoxia as a breakdown product of ATP. Therefore, we hypothesized that GABAergic and/or adenosinergic signalling contributes to the blunted HVR and robust HMR in Damaraland mole-rats. To test this hypothesis, we injected adult animals with saline alone (controls), or 100 mg kg-1 aminophylline or 1 mg kg-1 bicuculline, to block adenosine or GABAA receptors, respectively. We then used respirometry, plethysmography and thermal RFID probes to non-invasively measure metabolic, ventilator and thermoregulatory responses, respectively, to acute hypoxia (1 h in 5 or 7% O2) in awake and freely behaving animals. We found that bicuculline had relatively minor effects on metabolism and thermoregulation but sensitized ventilation such that the HVR became manifest at 7% instead of 5% O2 and was greater in magnitude. Aminophylline increased metabolic rate, ventilation and body temperature in normoxia, and augmented the HMR and HVR. Taken together, these findings indicate that adenosinergic and GABAergic signalling play important roles in mediating the robust HMR and blunted HVR in Damaraland mole-rats.


Assuntos
Adenosina , Aminofilina , Animais , Bicuculina/farmacologia , Adenosina/farmacologia , Ratos-Toupeira/fisiologia , Hipóxia/metabolismo , Ácido gama-Aminobutírico
17.
Nature ; 621(7977): 196-205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612507

RESUMO

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Assuntos
Envelhecimento Saudável , Hialuronan Sintases , Ácido Hialurônico , Longevidade , Ratos-Toupeira , Animais , Camundongos , Ácido Hialurônico/biossíntese , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Transgênicos , Ratos-Toupeira/genética , Longevidade/genética , Longevidade/imunologia , Longevidade/fisiologia , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Transgenes/genética , Transgenes/fisiologia , Transcriptoma , Neoplasias/genética , Neoplasias/prevenção & controle , Estresse Oxidativo , Gerociência , Rejuvenescimento/fisiologia
18.
Sci Signal ; 16(796): eadj8555, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527353

RESUMO

Senescent cells in naked mole-rats are eliminated by apoptosis.


Assuntos
Ratos-Toupeira , Animais
19.
Genome Res ; 33(9): 1513-1526, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625847

RESUMO

Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.


Assuntos
Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Ratos-Toupeira/genética , Hipóxia
20.
J Therm Biol ; 115: 103618, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399744

RESUMO

Several hundred mammalian species thrive in complex burrow systems, which protect them from climatic extremes and predation. At the same time, it is also a stressful environment due to low food supply, high humidity, and, in some cases, a hypoxic and hypercapnic atmosphere. To face such conditions, subterranean rodents have convergently evolved low basal metabolic rate, high minimal thermal conductance and low body temperature. Although these parameters have been intensively studied in the last decades, such information is far from being well-known in one of the most studied groups of subterranean rodents, the blind mole rats of the genus Nannospalax. The lack of information is particularly noticeable for parameters such as the upper critical temperature and the width of the thermoneutral zone. In our study, we analysed the energetics of the Upper Galilee Mountain blind mole rat Nannospalax galili and found its basal metabolic rate of 0.84 ± 0.10 mL O2×g-1 × h-1, thermoneutral zone between 28 and 35 °C, mean Tb within the zone of 36.3 ± 0.6 °C, and minimal thermal conductance equal to 0.082 mL O2×g-1 × h-1 × C-1. Nannospalax galili is a truly homeothermic rodent well adapted to face lower ambient temperatures, because its Tb was stable down to the lowest temperature measured (10 °C). At the same time, a relatively high basal metabolic rate and relatively low minimal thermal conductance for a subterranean rodent of such body mass, and the difficulty of surviving ambient temperatures slightly above upper critical temperature, indicates problems with sufficient heat dissipation at higher temperatures. This can easily lead to overheating, that is relevant mainly during the hot-dry season. These findings suggest that N. galili can be threatened by ongoing global climate change.


Assuntos
Regulação da Temperatura Corporal , Ratos-Toupeira , Animais , Biologia , Temperatura Corporal , Muridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...