Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.612.866
Filtrar
1.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581015

RESUMO

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Assuntos
Citrullus colocynthis , Diabetes Mellitus Experimental , Alho , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Alho/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
2.
J Evid Based Integr Med ; 29: 2515690X241244845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38613379

RESUMO

Garcinia dulcis (GD) extract possesses anti-hypertensive property that are poorly characterized. This study aimed to investigate an anti-inflammatory effect of GD flower extract in the 2-kidney-1-clip (2K1C) hypertensive compared to sham operative (SO) rat. Male Wistar rats were divided into 2 groups; the 2K1C group in which a silver clip was placed around renal artery to induce hypertension, and the SO normotensive group. Four weeks later, each group of rats were further divided into 2 subgroups, each subgroup was orally gavaged of either corn oil (vehicle) or 50 mg/kg BW GD extract daily for 4 weeks. The malondialdehyde (MDA) levels in serum, liver, and kidney were determined. Hematoxylin and eosin staining was carried out for histological examination, Periodic acid - Schiff staining for glomerular injury, Masson's trichrome staining for renal fibrosis, and immunohistochemistry for either tumor necrosis factor alpha (TNF-α) or endothelial nitric oxide synthase (eNOS) investigation. Taken together, our results demonstrated that GD flower extract decreased the MDA level in both serum and liver and kidney tissue and suppressed the expression of TNF-α in both liver and kidney of 2K1C hypertensive rats. Mesangial cell proliferation, expansion of mesangial matrix, widening Bowman's capsule space, congestion of glomerular capillary and vessel, cloudy swelling of renal tubular epithelial cell, and renal fibrosis were observed in the kidneys of 2K1C rats. Therefore, we concluded that GD flower extract can alleviate liver and kidney inflammation in which partially attenuates the glomerular injury in the 2K1C rat.


Assuntos
Hipertensão , Fator de Necrose Tumoral alfa , Masculino , Ratos , Animais , Fator de Necrose Tumoral alfa/genética , Ratos Wistar , Rim , Fígado , Inflamação/tratamento farmacológico , Instrumentos Cirúrgicos , Fibrose , Extratos Vegetais/farmacologia
3.
Spinal Cord Ser Cases ; 10(1): 21, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615029

RESUMO

STUDY DESIGN: Scoping systematic review. OBJECTIVES: To summarize the available experimental clinical and animal studies for the identification of all CSF and serum-derived biochemical markers in human and rat SCI models. SETTING: Tehran, Iran. METHODS: In this scoping article, we systematically reviewed the electronic databases of PubMed, Scopus, WOS, and CENTRAL to retrieve current literature assessing the levels of different biomarkers in human and rat SCI models. RESULTS: A total of 19,589 articles were retrieved and 6897 duplicated titles were removed. The remaining 12,692 studies were screened by their title/abstract and 12,636 were removed. The remaining 56 were considered for full-text assessment, and 11 papers did not meet the criteria, and finally, 45 studies were included. 26 studies were human observational studies comprising 1630 patients, and 19 articles studied SCI models in rats, including 832 rats. Upon reviewing the literature, we encountered a remarkable heterogeneity in terms of selected biomarkers, timing, and method of measurement, studied models, extent, and mechanism of injury as well as outcome assessment measures. CONCLUSIONS: The specific expression and distribution patterns of biomarkers in relation to spinal cord injury (SCI) phases, and their varied concentrations over time, suggest that cerebrospinal fluid (CSF) and blood biomarkers are effective measures for assessing the severity of SCI.


Assuntos
Traumatismos da Medula Espinal , Animais , Humanos , Ratos , Irã (Geográfico) , Biomarcadores , Bases de Dados Factuais , Avaliação de Resultados em Cuidados de Saúde
4.
Sci Rep ; 14(1): 8605, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615065

RESUMO

Adolescence is characterized by increased impulsive and risk-taking behaviors. To better understand the neural networks that subserves impulsivity in adolescents, we used a reward-guided behavioral model that quantifies age differences in impulsive actions in adult and adolescent rats of both sexes. Using chemogenetics, we identified orbitofrontal cortex (OFC) projections to the dorsomedial striatum (DMS) as a critical pathway for age-related execution of impulsive actions. Simultaneous recording of single units and local field potentials in the OFC and DMS during task performance revealed an overall muted response in adolescents during impulsive actions as well as age-specific differences in theta power and OFC-DMS functional connectivity. Collectively, these data reveal that the OFC-DMS pathway is critical for age-differences in reward-guided impulsive actions and provide a network mechanism to enhance our understanding of how adolescent and adult brains coordinate behavioral inhibition.


Assuntos
Corpo Estriado , Neostriado , Feminino , Masculino , Animais , Ratos , Comportamento Impulsivo , Encéfalo , Procedimentos Clínicos
5.
CNS Neurosci Ther ; 30(4): e14713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615362

RESUMO

AIMS: We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS: The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS: LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION: We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.


Assuntos
Disfunção Cognitiva , Propionatos , Esquizofrenia , Animais , Camundongos , Ratos , Fenciclidina , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Isoxazóis
6.
CNS Neurosci Ther ; 30(4): e14725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615367

RESUMO

OBJECTIVES: Astragaloside IV (AST IV) and ligustrazine (Lig), the main ingredients of Astragali Radix and Chuanxiong Rhizoma respectively, have demonstrated significant benefits in treatment of cerebral ischemia -reperfusion injury (CIRI); however, the mechanisms underlying its benificial effects remain unclear. SUMO-1ylation and deSUMO-2/3ylation of dynamin-related protein 1 (Drp1) results in mitochondrial homeostasis imbalance following CIRI, which subsequently aggravates cell damage. This study investigates the mechanisms by which AST IV combined with Lig protects against CIRI, focusing on the involvement of SUMOylation in mitochondrial dynamics. METHODS: Rats were administrated AST IV and Lig for 7 days, and middle cerebral artery occlusion was established to mimic CIRI. Neural function, cerebral infarction volume, cerebral blood flow, cognitive function, cortical pathological lesions, and mitochondrial morphology were measured. SH-SY5Y cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Mitochondrial membrane potential and lactic dehydrogenase (LDH), reactive oxygen species (ROS), and adenosine triphosphate (ATP) levels were assessed with commercial kits. Moreover, co-immunoprecipitation (Co-IP) was used to detect the binding of SUMO1 and SUMO2/3 to Drp1. The protein expressions of Drp1, Fis1, MFF, OPA1, Mfn1, Mfn2, SUMO1, SUMO2/3, SENP1, SENP2, SENP3, SENP5, and SENP6 were measured using western blot. RESULTS: In rats with CIRI, AST IV and Lig improved neurological and cognitive functions, restored CBF, reduced brain infarct volume, and alleviated cortical neuron and mitochondrial damage. Moreover, in SH-SY5Y cells, the combination of AST IV and Lig enhanced cellular viability, decreased release of LDH and ROS, increased ATP content, and improved mitochondrial membrane potential. Furthermore, AST IV combined with Lig reduced the binding of Drp1 with SUMO1, increased the binding of Drp1 with SUMO2/3, suppressed the expressions of Drp1, Fis1, MFF, and SENP3, and increased the expressions of OPA1, Mfn1, Mfn2, SENP1, SENP2, and SENP5. SUMO1 overexpression promoted mitochondrial fission and inhibited mitochondrial fusion, whereas SUMO2/3 overexpression suppressed mitochondrial fission. AST IV combined with Lig could reverse the effects of SUMO1 overexpression while enhancing those of SUMO2/3 overexpression. CONCLUSIONS: This study posits that the combination of AST IV and Lig has the potential to reduce the SUMO-1ylation of Drp1, augment the SUMO-2/3ylation of Drp1, and thereby exert a protective effect against CIRI.


Assuntos
Dinâmica Mitocondrial , Neuroblastoma , Pirazinas , Saponinas , Triterpenos , Humanos , Animais , Ratos , Espécies Reativas de Oxigênio , Trifosfato de Adenosina , Dinaminas , Cisteína Endopeptidases
7.
CNS Neurosci Ther ; 30(4): e14724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615365

RESUMO

BACKGROUND: Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE: In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS: Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS: Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS: Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.


Assuntos
Quercetina , Receptores de N-Metil-D-Aspartato , Humanos , Animais , Ratos , Quercetina/farmacologia , Quercetina/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
8.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617795

RESUMO

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Assuntos
Ácidos Cafeicos , Dissacarídeos , Nanopartículas , Espermina/análogos & derivados , Estilbenos , Espectrometria de Massas em Tandem , Animais , Ratos , Disponibilidade Biológica , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Int J Nanomedicine ; 19: 3315-3332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617797

RESUMO

Background: Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods: In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results: The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion: Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Animais , Ratos , Peróxido de Hidrogênio , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Carbono
10.
Drug Des Devel Ther ; 18: 1103-1114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618283

RESUMO

Purpose: Intravenous regional anesthesia (IVRA) using lidocaine provides effective localized analgesia but its duration is limited. The mechanism by which dexmedetomidine enhances lidocaine IVRA is unclear but may involve modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Materials and Methods: Lidocaine IVRA with varying dexmedetomidine concentrations was performed in the tails of Sprague-Dawley rats. Tail-flick and tail-clamping tests assessed IVRA analgesia and anesthesia efficacy and duration. Contributions of α2 adrenergic receptors and HCN channels were evaluated by incorporating an α adrenergic receptor antagonist, the HCN channel inhibitor ZD7288, and the HCN channel agonist forskolin. Furthermore, whole-cell patch clamp electrophysiology quantified the effects of dexmedetomidine on HCN channels mediating hyperpolarization-activated cation current (Ih) in isolated dorsal root ganglion neurons. Results: Dexmedetomidine dose-dependently extended lidocaine IVRA duration and analgesia, unaffected by α2 receptor blockade. The HCN channel inhibitor ZD7288 also prolonged lidocaine IVRA effects, while the HCN channel activator forskolin shortened effects. In dorsal root ganglion neurons, dexmedetomidine concentration-dependently inhibited Ih amplitude and shifted the voltage-dependence of HCN channel activation. Conclusion: Dexmedetomidine prolongs lidocaine IVRA duration by directly inhibiting HCN channel activity, independent of α2 adrenergic receptor activation. This HCN channel inhibition represents a novel mechanism underlying the anesthetic and analgesic adjuvant effects of dexmedetomidine in IVRA.


Assuntos
Anestesia por Condução , Dexmedetomidina , Ratos , Animais , Lidocaína/farmacologia , Dexmedetomidina/farmacologia , Ratos Sprague-Dawley , Colforsina , Cátions
11.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619261

RESUMO

Gene therapy is a powerful technology to deliver new genes to a patient for the treatment of disease, be it to introduce a functional gene, inactivate a toxic gene, or provide a gene whose product can modulate the biology of the disease. The delivery method for the therapeutic vector can take many forms, ranging from intravenous infusion for systemic delivery to direct injection into the target tissue. For neurodegenerative disorders, it is often desirable to skew transduction towards the brain and/or spinal cord. The least invasive approach to target the entire central nervous system involves injection into the cerebrospinal fluid (CSF), allowing the therapeutic to reach a large fraction of the central nervous system. The safest approach to deliver a vector into the CSF is the lumbar intrathecal injection, where a needle is introduced into the lumbar cistern of the spinal cord. This technique, also known as a lumbar puncture, has been widely used in neonatal and adult rodents and in large animal models. While the technique is similar across species and developmental stages, subtle differences in size, structure, and elasticity of tissues surrounding the intrathecal space require accommodations in the approach. This article describes a method for performing lumbar puncture in juvenile rats to deliver an adeno-associated serotype 9 vector. Here, 25-35 µL of vector were injected into the lumbar cistern, and a green fluorescent protein (GFP) reporter was used to evaluate the transduction profile resulting from each injection. The benefits and challenges of this approach are discussed.


Assuntos
Sistema Nervoso Central , Medula Espinal , Adulto , Ratos , Animais , Humanos , Injeções , Acomodação Ocular , Encéfalo
12.
Transl Psychiatry ; 14(1): 190, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622130

RESUMO

Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.


Assuntos
Estimulação Encefálica Profunda , Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Ratos , Animais , Núcleo Dorsal da Rafe , Estimulação Encefálica Profunda/métodos , Comportamento de Procura de Droga/fisiologia , Transtornos Relacionados ao Uso de Substâncias/terapia
13.
Nat Commun ; 15(1): 3247, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622169

RESUMO

Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.


Assuntos
Hidrogéis , Raios Ultravioleta , Masculino , Animais , Bovinos , Ratos , Hidrogéis/química , Raios X , Polimerização , Raios Infravermelhos
14.
Sci Rep ; 14(1): 8729, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622264

RESUMO

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Losartan , Piridonas , Humanos , Ratos , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Bleomicina/toxicidade , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Colágeno/farmacologia
15.
Mol Biol Rep ; 51(1): 506, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622341

RESUMO

BACKGROUND: Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS: The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS: The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.


Assuntos
Fibrilação Atrial , Fator Natriurético Atrial , Ratos , Animais , Ratos Sprague-Dawley , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Tenascina , Fibrilação Atrial/tratamento farmacológico , Angiotensina II/farmacologia , Inflamação/tratamento farmacológico , Colágeno , Fibrose
16.
J Orthop Surg Res ; 19(1): 243, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622659

RESUMO

Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.


Assuntos
Reabsorção Óssea , Exossomos , Necrose da Cabeça do Fêmur , Osteonecrose , Ratos , Animais , Osteogênese , Exossomos/metabolismo , Cabeça do Fêmur/metabolismo , Osteonecrose/prevenção & controle , Inflamação/metabolismo , Macrófagos/metabolismo , Esteroides/efeitos adversos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/prevenção & controle , Necrose da Cabeça do Fêmur/metabolismo
17.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Sterculia , Ratos , Animais , Ratos Wistar , Fármacos Neuroprotetores/farmacologia , Caspase 3 , Peróxido de Hidrogênio , Oxidopamina , Etanol/toxicidade
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612467

RESUMO

Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Fusão Vertebral , Humanos , Animais , Ratos , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas
19.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612469

RESUMO

Dietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.


Assuntos
Microbioma Gastrointestinal , Metionina , Animais , Ratos , RNA Ribossômico 16S/genética , Racemetionina , Metabolômica
20.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612487

RESUMO

We previously demonstrated that a genetic single-nucleotide polymorphism (SNP, rs2304297) in the 3' untranslated region (UTR) of the human CHRNA6 gene has sex- and genotype-dependent effects on nicotine-induced locomotion, anxiety, and nicotine + cue-induced reinstatement in adolescent rats. This study aims to investigate how the CHRNA6 3'-UTR SNP influences dopaminergic and noradrenergic tissue levels in brain reward regions during baseline and after the reinstatement of drug-seeking behavior. Naïve adolescent and adult rats, along with those undergoing nicotine + cue reinstatement and carrying the CHRNA6 3'-UTR SNP, were assessed for dopamine (DA), norepinephrine (NE), and metabolites in reward pathway regions. The results reveal age-, sex-, and genotype-dependent baseline DA, NE, and DA turnover levels. Post-reinstatement, male α6GG rats show suppressed DA levels in the Nucleus Accumbens (NAc) Shell compared to the baseline, while nicotine+ cue-induced reinstatement behavior correlates with neurotransmitter levels in specific brain regions. This study emphasizes the role of CHRNA6 3'-UTR SNP in the developmental maturation of the dopaminergic and noradrenergic system in the adolescent rat brain, with tissue levels acting as predictors of nicotine + cue-induced reinstatement.


Assuntos
Dopamina , Receptores Nicotínicos , Humanos , Adolescente , Adulto , Masculino , Animais , Ratos , Norepinefrina , Nicotina , Polimorfismo de Nucleotídeo Único , Encéfalo , Regiões 3' não Traduzidas/genética , Receptores Nicotínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...